
z/OS

Common

Debug

Architecture

User’s

Guide

SC09-7653-01

���

z/OS

Common

Debug

Architecture

User’s

Guide

SC09-7653-01

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

information

in

“Notices”

on

page

37.

Second

Edition

(September

2004)

This

edition

applies

to

Version

1

Release

6

of

z/OS

C/C++

(5694-A01),

Version

1

Release

6

of

z/OS.e

(5655-G52),

and

to

all

subsequent

releases

until

otherwise

indicated

in

new

editions.

Ensure

that

you

apply

all

necessary

PTFs

for

the

program.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

location.

Publications

are

not

stocked

at

the

address

below.

You

can

also

browse

the

documents

on

the

World

Wide

Web

by

clicking

on

″The

Library″

link

on

the

z/OS

home

page.

IBM

welcomes

your

comments.

You

can

send

your

comments

via

e-mail

to

compinfo@ca.ibm.com.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

Include

the

title

and

order

number

of

this

document,

and

the

page

number

or

topic

related

to

your

comment.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Who

should

use

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

A

note

about

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

CDA

and

related

publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Softcopy

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Softcopy

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Common

Debug

Architecture

on

the

World

Wide

Web

.

.

.

.

.

.

.

.

.

.

. vii

Where

to

find

more

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. viii

Chapter

1.

About

Common

Debug

Architecture

.

.

.

.

.

.

.

.

.

.

.

. 1

CDA

libraries

and

utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

libelf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

libdwarf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

libddpi

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

isdcnvt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

dwarfdump

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Changes

for

CDA

in

z/OS

V1R6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

CDA

requirements

and

recommendations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

CDA

limitations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Chapter

2.

Overview

of

reading

and

writing

CDA

debugging

information

.

. 7

Creating

an

ELF

descriptor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Writing

DWARF

data

to

the

ELF

object

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Reading

from

an

ELF

object

file

with

libelf

and

libdwarf

.

.

.

.

.

.

.

.

.

. 11

Reading

from

an

ELF

object

file

with

libelf,

libdwarf,

and

libddpi

.

.

.

.

.

.

. 12

Accessing

debugging

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Accessing

z/OS

C/C++

debugging

information

.

.

.

.

.

.

.

.

.

.

.

. 15

Accessing

and

converting

ISD

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Accessing

non-z/OS

C/C++

debugging

information

.

.

.

.

.

.

.

.

.

.

. 16

Chapter

3.

Using

consumer

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Initializing

libelf

and

libdwarf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Initialization

process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Consuming

DWARF

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Traversing

the

DIE

hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Accessing

information

in

a

DIE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Terminating

libelf

and

libdwarf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Chapter

4.

Using

producer

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Steps

for

converting

a

line-number

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Steps

for

preparing

the

debug_ppa

section

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Steps

for

converting

symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Additional

steps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Location

expressions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Example

of

converting

a

symbol

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Chapter

5.

Using

consumer

and

producer

functions

.

.

.

.

.

.

.

.

.

. 25

Creating

a

consumer

application

with

conversion

.

.

.

.

.

.

.

.

.

.

.

. 25

Initializing

the

libddpi

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Creating

and

using

consumer

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Terminating

the

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Chapter

6.

In

Storage

Debug

(ISD)

Information

Conversion

Utility

.

.

.

.

. 31

©

Copyright

IBM

Corp.

2004

iii

||
||
||
||
||
||
||

||
||
||
||

Appendix

A.

Diagnosing

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Using

the

diagnosis

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Avoiding

installation

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Appendix

B.

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Using

assistive

technologies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Keyboard

navigation

of

the

user

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

z/OS

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Programming-Interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Standards

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

z/OS

Run-Time

Library

Extensions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

z/OS

C/C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

z/OS

Language

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

z/Architecture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

iv

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

About

this

document

This

document

introduces

the

user

to

Common

Debug

Architecture

(CDA).

It

first

provides

a

high-level

overview

of

CDA.

The

document

then

illustrates

how

to

use

the

CDA

libraries

and

utilities,

through

explanations

and

examples

that

build

on

each

other.

Finally,

it

shows

an

example

implementation,

using

the

utilities

that

are

shipped

with

CDA.

Who

should

use

this

document

This

document

is

intended

for

programmers

who

will

be

developing

program

analysis

applications

and

debugging

applications

for

the

IBM®

C/C++

compiler

on

the

z/OS®

operating

system.

The

libraries

provided

by

CDA

allow

applications

to

create

or

query

DWARF

debugging

information

from

ELF

object

files

on

the

z/OS

V1R6

operating

system.

This

document

is

a

reference

rather

than

a

tutorial.

It

assumes

that

you

have

a

working

knowledge

of

the

following

items:

v

The

z/OS

operating

system

v

The

libdwarf

APIs

v

The

libelf

APIs

v

The

ELF

ABI

v

Writing

debugging

programs

in

C

on

z/OS

v

Writing

debugging

programs

in

C++

on

z/OS

v

POSIX

on

z/OS

v

The

Language

Environment®

(LE)

on

z/OS

v

UNIX®

System

Services

(USS)

shell

on

z/OS

A

note

about

examples

Examples

that

illustrate

the

use

of

the

libelf,

libdwarf,

and

libddpi

libraries

are

instructional

examples,

and

do

not

attempt

to

minimize

the

run-time

performance,

conserve

storage,

or

check

for

errors.

The

examples

do

not

demonstrate

all

the

uses

of

the

libraries.

Some

examples

are

only

code

fragments

and

will

not

compile

without

additional

code.

CDA

and

related

publications

This

section

summarizes

the

content

of

the

CDA

publications

and

shows

where

to

find

related

information

in

other

publications.

Table

1.

CDA,

DWARF,

and

ELF

publications

Document

title

and

number

Key

sections/chapters

in

the

document

z/OS

Common

Debug

Architecture

Library

Reference,

SC09-7654

The

reference

for

IBM’s

libddpi

library.

It

includes:

v

General

discussion

of

CDA

v

APIs

and

data

types

related

to

stacks,

processes,

operating

systems,

machine

state,

storage,

and

formatting

This

book

is

available

at:

http://www.ibm.com/software/awdtools/libraryext/library/.

©

Copyright

IBM

Corp.

2004

v

|

http://www.ibm.com/software/awdtools/libraryext/library/

Table

1.

CDA,

DWARF,

and

ELF

publications

(continued)

Document

title

and

number

Key

sections/chapters

in

the

document

DWARF/ELF

Extensions

Library

Reference,

SC09-7655

The

reference

for

IBM’s

extensions

to

the

libdwarf

and

libelf

libraries.

It

includes:

v

Consumer

APIs

v

Producer

APIs

This

document

discusses

only

these

extensions,

and

does

not

provide

a

detailed

explanation

of

DWARF

and

ELF.

This

book

is

available

at:

http://www.ibm.com/software/awdtools/libraryext/library/.

System

V

Application

Binary

Interface

Standard

The

Draft

April

24,

2001

version

of

the

ELF

standard.

For

more

information

on

this

book,

go

to:

http://www.ibm.com/software/awdtools/libraryext/library/.

ELF

Application

Binary

Interface

Supplement

The

Draft

April

24,

2001

version

of

the

ELF

standard

supplement.

For

more

information

on

this

book,

go

to:

http://www.ibm.com/software/awdtools/libraryext/library/.

DWARF

Debugging

Information

Format,

Version

3

The

Draft

8

(November

19,

2001)

version

of

the

DWARF

standard.

This

document

is

available

on

the

web.

Consumer

Library

Interface

to

DWARF

The

revision

1.48,

March

31,

2002,

version

of

the

libdwarf

consumer

library.

This

book

is

available

at:

http://www.ibm.com/software/awdtools/libraryext/library/.

Producer

Library

Interface

to

DWARF

The

revision

1.18,

January

10,

2002,

version

of

the

libdwarf

producer

library.

This

book

is

available

at:

http://www.ibm.com/software/awdtools/libraryext/library/.

MIPS

Extensions

to

DWARF

Version

2.0

The

revision

1.17,

August

29,

2001,

version

of

the

MIPS

extension

to

DWARF.

This

book

is

available

at:

http://www.ibm.com/software/awdtools/libraryext/library/.

z/OS

C/C++

User’s

Guide,

SC09-4767

Guidance

information

for:

v

z/OS

C/C++

examples

v

Compiler

options

v

Binder

options

and

control

statements

v

Specifying

z/OS

Language

Environment

run-time

options

v

Compiling,

IPA

linking,

binding,

and

running

z/OS

C/C++

programs

v

Utilities

(Object

Library,

CXXFILT,

DSECT

Conversion,

Code

Set

and

Locale,

ar

and

make,

BPXBATCH)

v

Diagnosing

problems

v

Cataloged

procedures

and

REXX

EXECs

supplied

by

IBM

This

book

is

available

at:

http://www.ibm.com/software/awdtools/czos/library.

z/OS

C/C++

Programming

Guide,

SC09-4765

Guidance

information

for:

v

Implementing

programs

that

are

written

in

C

and

C++

v

Developing

C

and

C++

programs

to

run

under

z/OS

and

z/OS.e

v

Using

XPLINK

assembler

in

C

and

C++

applications

v

Debugging

I/O

processes

v

Using

advanced

coding

techniques,

such

as

threads

and

exception

handlers

v

Optimizing

code

v

Internationalizing

applications

vi

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

|
|
|
|
|
|
|
|

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/commondebug/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/czos/library/

The

following

table

lists

the

related

publications

for

CDA,

ELF,

and

DWARF.

The

table

groups

the

publications

according

to

the

tasks

they

describe.

Table

2.

Publications

by

task

Tasks

Documents

Coding

programs

v

DWARF/ELF

Extensions

Library

Reference,

SC09-7655

v

z/OS

Common

Debug

Architecture

Library

Reference,

SC09-7654

v

z/OS

Common

Debug

Architecture

User’s

Guide,

SC09-7653

v

DWARF

Debugging

Information

Format

v

Consumer

Library

Interface

to

DWARF

v

Producer

Library

Interface

to

DWARF

v

MIPS

Extensions

to

DWARF

Version

2.0

Compiling,

binding,

and

running

programs

v

z/OS

C/C++

User’s

Guide,

SC09-4767

v

z/OS

C/C++

Programming

Guide,

SC09-4765

General

discussion

of

CDA

v

z/OS

Common

Debug

Architecture

User’s

Guide,

SC09-7653

v

z/OS

Common

Debug

Architecture

Library

Reference,

SC09-7654

Environment

and

application

APIs

and

data

types

v

z/OS

Common

Debug

Architecture

Library

Reference,

SC09-7654

A

guide

to

using

the

libraries

v

z/OS

Common

Debug

Architecture

User’s

Guide,

SC09-7653

Examples

of

a

producer

and

a

consumer

program

v

z/OS

Common

Debug

Architecture

User’s

Guide,

SC09-7653

Softcopy

documents

The

z/OS™

Common

Debug

Architecture

publications

are

supplied

in

PDF

formats

and

BookMaster®

formats

on

the

following

CD:

z/OS

Collection,

SK3T-4269.

They

are

also

available

at

the

following

Web

site:

http://www.ibm.com/software/awdtools/libraryext/library

To

read

a

PDF

file,

use

the

Adobe

Acrobat

Reader.

If

you

do

not

have

the

Adobe

Acrobat

Reader,

you

can

download

it

for

free

from

the

Adobe

Web

site

at

http://www.adobe.com.

You

can

also

browse

the

documents

on

the

World

Wide

Web

by

visiting

the

z/OS

library

at

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note:

For

further

information

on

viewing

and

printing

softcopy

documents

and

using

BookManager®,

see

z/OS

Information

Roadmap.

Softcopy

examples

Most

of

the

larger

examples

in

the

Common

Debug

Architecture

documents

are

available

in

machine-readable

form

in

the

directory

/usr/lpp/cbclib/source.

Common

Debug

Architecture

on

the

World

Wide

Web

Additional

information

on

Common

Debug

Architecture

is

available

on

the

World

Wide

Web

on

the

Common

Debug

Architecture

home

page

at:

http://www.ibm.com/software/awdtools/commondebug

This

page

contains

late-breaking

information

about

Common

Debug

Architecture.

There

are

links

to

other

useful

information,

such

as

the

Common

Debug

Architecture

information

library.

About

this

document

vii

|
|

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/software/awdtools/commondebug/

Where

to

find

more

information

Please

see

z/OS

Information

Roadmap

for

an

overview

of

the

documentation

associated

with

z/OS,

including

the

documentation

available

for

z/OS

Language

Environment.

Accessing

z/OS

licensed

documents

on

the

Internet

z/OS

licensed

documentation

is

available

on

the

Internet

in

PDF

format

at

the

IBM

Resource

Link™

Web

site

at:

http://www.ibm.com/servers/resourcelink

Licensed

documents

are

available

only

to

customers

with

a

z/OS

license.

Access

to

these

documents

requires

an

IBM

Resource

Link

user

ID

and

password,

and

a

key

code.

With

your

z/OS

order

you

received

a

Memo

to

Licensees,

(GI10-0671),

that

includes

this

key

code.

1

To

obtain

your

IBM

Resource

Link

user

ID

and

password,

log

on

to:

http://www.ibm.com/servers/resourcelink

To

register

for

access

to

the

z/OS

licensed

documents:

1.

Sign

in

to

Resource

Link

using

your

Resource

Link

user

ID

and

password.

2.

Select

User

Profiles

located

on

the

left-hand

navigation

bar.

Note:

You

cannot

access

the

z/OS

licensed

documents

unless

you

have

registered

for

access

to

them

and

received

an

e-mail

confirmation

informing

you

that

your

request

has

been

processed.

Printed

licensed

documents

are

not

available

from

IBM.

You

can

use

the

PDF

format

on

either

z/OS

Licensed

Product

Library

CD-ROM

or

IBM

Resource

Link

to

print

licensed

documents.

Using

LookAt

to

look

up

message

explanations

LookAt

is

an

online

facility

that

lets

you

look

up

explanations

for

most

messages

you

encounter,

as

well

as

for

some

system

abends

and

codes.

Using

LookAt

to

find

information

is

faster

than

a

conventional

search

because

in

most

cases

LookAt

goes

directly

to

the

message

explanation.

You

can

access

LookAt

from

the

Internet

at:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or

from

anywhere

in

z/OS

or

z/OS.e

where

you

can

access

a

TSO/E

command

line

(for

example,

TSO/E

prompt,

ISPF,

z/OS

UNIX

System

Services

running

OMVS).

The

LookAt

Web

site

also

features

a

mobile

edition

of

LookAt

for

devices

such

as

Pocket

PCs,

Palm

OS,

or

Linux-based

handhelds.

So,

if

you

have

a

handheld

device

with

wireless

access

and

an

Internet

browser,

you

can

now

access

LookAt

message

information

from

almost

anywhere.

To

use

LookAt

as

a

TSO/E

command,

you

must

have

LookAt

installed

on

your

host

system.

You

can

obtain

the

LookAt

code

for

TSO/E

from

a

disk

on

your

z/OS

Collection

(SK3T-4269)

or

from

the

LookAt

Web

site’s

Download

link.

1.

z/OS.e

customers

received

a

Memo

to

Licensees,

(GI10-0684)

that

includes

this

key

code.

viii

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Chapter

1.

About

Common

Debug

Architecture

This

chapter

gives

an

overview

of

each

of

the

components

of

Common

Debug

Architecture

(CDA)

and

the

requirements

and

restrictions

for

an

application

developer

who

uses

those

components.

CDA

components

are

based

on

the

Executable

and

Linking

Format

(ELF)

application

binary

interfaces

(ABIs)

and

the

DWARF

format.

CDA

was

introduced

in

z/OS

V1R5

to

provide

a

consistent

format

for

debug

information

on

z/OS.

The

CDA

libraries

provide

a

set

of

APIs

to

access

this

debug

information.

These

APIs

will

help

support

the

development

of

debuggers

and

other

program

analysis

applications

for

z/OS.

CDA

is

intended

to

provide

an

opportunity

to

work

towards

a

common

debug

information

format

across

the

various

languages

and

operating

systems

that

are

supported

on

the

zSeries™

eServer

platform.

The

architecture

is

implemented

in

the

z/OS

CDA

libraries

component

of

the

z/OS

Run-Time

Library

Extensions

element

of

z/OS

V1R5

and

higher.

The

core

of

the

Common

Debug

Architecture

is

the

DWARF

standard.

DWARF

is

an

industry-standard

and

language-independent

format

for

debugging

information.

It

is

designed

to

meet

the

symbolic,

source-level

debugging

needs

of

different

languages

in

a

unified

fashion.

The

design

of

the

debugging

information

format

is

open-ended,

allowing

for

the

addition

of

new

debugging

information

to

accommodate

new

languages

or

debugger

capabilities.

DWARF

was

developed

by

the

UNIX

International

Programming

Languages

Special

Interest

Group

(SIG).

CDA’s

implementation

of

DWARF

is

based

on

working

draft

7

of

the

DWARF

3

standard.

The

use

of

DWARF

has

two

distinct

advantages:

v

It

provides

a

stable

and

maintainable

debug

information

format

for

all

languages.

v

It

facilitates

porting

program

analysis

and

debug

applications

to

z/OS

from

other

platforms

that

also

use

DWARF.

CDA-compliant

applications

store

the

DWARF

debugging

information

in

a

separate

ELF

object

file.

Because

this

debug

information

is

not

in

a

typical

object

file,

both

of

the

following

are

minimized

when

the

executable

module

is

loaded

into

memory.

v

The

size

of

the

executable

module

is

reduced

v

Memory

usage

is

minimized

Using

a

separate

object

file

enables

the

program

analysis

application

to

load

specific

information

only

if

it

is

needed.

If

you

create

the

separate

ELF

object

file

with

the

DEBUG

option

of

the

z/OS

C/C++

compiler,

the

file

has

a

*.dbg

extension.

Note:

Whenever

this

document

refers

to

an

ELF

object

file,

it

is

discussing

this

separate

ELF

object

file

that

stores

only

DWARF

debugging

information.

CDA

libraries

and

utilities

CDA

comprises

three

libraries

and

two

utilities.

Libraries

are:

v

libelf

v

libdwarf

©

Copyright

IBM

Corp.

2004

1

|
|
|

|

|

|
|

|

|

|

|

|

v

libddpi

Utilities

are:

v

isdcnvt

v

dwarfdump

To

ensure

compatibility,

the

libdwarf

and

libelf

libraries

are

packaged

together

in

a

single

DLL.

The

libddpi

library

is

available

in

XPLINK

object

form

only.

Regardless

of

whether

a

64-bit

or

31-bit

version

of

a

library

is

used,

the

created

information

is

binary-equivalent.

For

example,

the

z/OS

C/C++

compilers

could

use

a

31-bit

version

of

libdwarf

and

libelf

to

create

the

debug

information,

although

the

z/OS

dbx

debugger

always

uses

a

64-bit

version

of

libdwarf,

libelf

and

libddpi

when

reading

the

debug

information.

The

libelf

and

libdwarf

libraries

each

consist

of

two

sets

of

APIs:

v

A

set

of

producer

APIs

that

help

create

ELF/DWARF

v

A

set

of

consumer

APIs

that

help

users

of

ELF/DWARF

The

libdwarf/libelf

DLL

contains

all

producer

and

consumer

APIs.

libelf

The

libelf

APIs

are

used

to

create

the

ELF

descriptor.

The

descriptor

is

then

used

by

other

APIs

to

read

from,

and

write

to,

the

ELF

object

file.

libelf

is

packaged

as

part

of

a

dynamic

link

library

(DLL).

Both

the

31-bit

version

and

the

64-bit

version

are

packaged

as

part

of

CEE.SCEERUN2.

v

For

64–bit

applications,

libelf

is

shipped

in

the

CDAEQED

DLL

as

part

of

CEE.SCEERUN2.

v

For

31–bit

applications,

libelf

is

shipped

in

the

CDAEED

DLL

as

part

of

CEE.SCEERUN2.

When

compiling

an

application

that

uses

the

libelf

library,

you

must:

v

Include

libelf.h

v

Bind

the

module

with

an

appropriate

side

deck:

–

For

64–bit

applications:

-

Bind

with

CEE.SCEELIB(CDAEQED)

if

you

are

using

an

MVS

file

system

-

Bind

with

/usr/lpp/cbclib/lib/libelfdwarf64.x

if

you

are

using

a

hierarchical

file

system

–

For

31–bit

applications,

use

either

of

the

following:

-

Bind

with

CEE.SCEELIB(CDAEED)

if

you

are

using

an

MVS

file

system

-

Bind

with

/usr/lpp/cbclib/lib/libelfdwarf32.x

if

you

are

using

a

hierarchical

file

system

Note:

IBM

has

extended

the

libelf

library

to

support

C/C++

on

the

z/OS

operating

system.

These

extensions

enable

the

libelf

library

to

be

used

in

various

environments

without

additional

extensions.

The

generic

interfaces

provided

by

libelf

are

defined

as

part

of

the

UNIX

System

V

Release

4

ABI.

For

descriptions

of

the

interfaces

supported

by

libelf,

refer

to

the

following

documents:

2

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

|

|

|

|

|
|

|

|
|
|
|
|

|

|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|
|

|
|
|
|
|
|

v

System

V

Application

Binary

Interface

Standard

v

DWARF/ELF

Extensions

Library

Reference

libdwarf

The

libdwarf

APIs:

v

Create

or

read

DWARF

objects

that

include

DWARF

debugging

information

v

Use

ELF

descriptors

to

read

from,

and

write

to,

the

ELF

object

file

libdwarf

is

packaged

as

a

dynamic

link

library

(DLL).

Both

the

31-bit

version

and

the

64-bit

version

are

packaged

as

part

of

CEE.SCEERUN2:

v

For

64–bit

applications,

libdwarf

is

shipped

in

the

CDAEQED

DLL

v

For

31–bit

applications,

libdwarf

is

shipped

in

the

CDAEED

DLL

When

compiling

an

application

that

uses

the

libdwarf

library,

you

must:

v

Include

both

libdwarf.h

and

dwarf.h

(which

are

located

in

the

/usr/lpp/cbclib/include/libdwarf

directory)

v

Bind

the

module

with

an

appropriate

side

deck:

–

For

64–bit

applications:

-

Bind

with

CEE.SCEELIB(CDAEQED)

if

you

are

using

an

MVS

file

system

-

Bind

with

/usr/lpp/cbclib/lib/libelfdwarf64.x

if

you

are

using

a

hierarchical

file

system

–

For

31–bit

applications:

-

Bind

with

CEE.SCEELIB(CDAEED)

if

you

are

using

an

MVS

file

system

-

Bind

with

/usr/lpp/cbclib/lib/libelfdwarf32.x

if

you

are

using

a

hierarchical

file

system

Note:

IBM

has

extended

the

libdwarf

library

to

support

C/C++

on

the

z/OS

operating

system.

The

IBM

extensions

to

libdwarf

provide:

v

Improved

speed

and

memory

utilization

v

Support

for

the

zSeries

eServer

C/C++

languages

v

Future

support

for

z/OS

and

zSeries

eServer

languages

such

as

FORTRAN,

HLASM,

COBOL,

and

PL/I

For

information

that

is

specific

to

these

extensions,

see

DWARF/ELF

Extensions

Library

Reference.

libddpi

The

Debug

Data

Program

Information

library

(libddpi)

provides

a

repository

for

gathering

information

about

a

program

module.

A

debugger

or

other

program

analysis

application

can

use

the

repository

to

collect

and

query

information

from

the

program

module.

libddpi:

v

Supports

conversion

of

non-DWARF

C/C++

debugging

information

to

the

DWARF

format.

For

example,

the

libddpi

library

is

used

to

convert

In

Store

Debug

(ISD)

information.

v

Puts

an

environmental

context

around

the

DWARF

information

for

both

the

producer

APIs

and

the

consumer

APIs.

For

library

reference

information

on

libddpi,

refer

to

z/OS

Common

Debug

Architecture

Library

Reference.

Chapter

1.

About

Common

Debug

Architecture

3

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|
|

|
|

|

|

|
|

|
|

|

|
|
|
|

|

|
|
|

|
|
|

The

libddpi

library

is

packaged

as

the

static

library

libddpi.a

in

the

/usr/lpp/cbclib/lib

directory.

This

directory

contains

both

the

31-bit

and

64-bit

versions

of

the

library.

When

creating

or

compiling

an

application

that

uses

libddpi,

you

must:

v

Include

libddpi.h

in

your

source

code

The

libddpi.h

file

is

located

in

the

/usr/lpp/cbclib/include/libddpi/

directory.

v

Compile

with

the

XPLINK

option

and

bind

with

libddpi.a.

The

libddpi

library

is

packaged

as

the

static

library

libddpi.a,

which

can

be

located

in

the

/usr/lpp/cbclib/lib/

directory.

The

member

libddpi.a

contains

both

XPLINK

31–bit

and

64–bit

versions

of

the

libddpi

library.

The

main

groups

of

APIs

in

libddpi

are

described

in

the

following

table:

API

groups

Description

CDA

application

model

APIs

This

group

allows

developers

to

model

applications

they

are

analyzing

and

to

keep

track

of

debugging

information

with

that

model.

Support

APIs

This

group

provides

information

about

system

settings

in

a

universal

manner.

System-dependent

APIs

This

group

provides

system-specific

helper

APIs.

System-independent

APIs

This

group

provides

generic

common

helper

APIs.

DWARF-expression

APIs

This

group

provides

a

DWARF

expression

evaluator

which

assists

with

the

evaluation

of

some

of

the

DWARF

opcodes.

Conversion

APIs

This

group

helps

convert

ISD

debugging

information

into

DWARF

debugging

information.

isdcnvt

Note:

isdcnvt

cannot

be

used

to

convert

64-bit

objects.

Debug

information

for

64–bit

C/C++

applications

is

available

only

in

DWARF

format.

isdcnvt

is

a

stand-alone

utility

that

converts

objects

with

In

Store

Debug

(ISD)

information

into

an

ELF

object

file.

In

other

words,

isdcnvt

accepts

objects

with

ISD

C/C++

debugging

information

and

generates

an

ELF

object

file

containing

debugging

information

in

the

DWARF

format.

It

is

shipped

in

the

/usr/lpp/cbclib/bin/isdcnvt

directory.

This

converter

supports

debugging

information

generated

by

the

TEST

option

for

C/C++

compilers.

For

more

information,

see

“CDA

limitations”

on

page

6.

The

following

restrictions

apply

to

the

isdcnvt

utility:

v

Debugging

information

cannot

be

converted

if

the

compilation

unit

(CU)

has

only

line

number

information.

This

occurs

if

the

GONUMBER

and

NOTEST

compiler

options

are

used.

v

CUs

cannot

be

converted

if

they

have

data

only

and

do

not

contain

any

functions.

4

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

|
|
|

|

|

|

|

|
|
|

|

|||

||
|
|
|

||
|

||
|

||
|

||
|
|

||
|
|
|

|

|
|

|
|
|
|
|

|
|

|

|
|
|

|
|

The

required

ISD

information

is

generated

by

the

C/C++

compiler

TEST

option.

For

more

information

on

isdcnvt,

see

Chapter

6,

“In

Storage

Debug

(ISD)

Information

Conversion

Utility,”

on

page

31.

For

more

information

on

the

conversion

APIs,

see

z/OS

Common

Debug

Architecture

Library

Reference

dwarfdump

The

dwarfdump

utility

displays

the

debugging

information

of

an

ELF

object

file

in

user-readable

form.

It

is

shipped

in

the

/usr/lpp/cbclib/bin

directory.

dwarfdump

works

on

DWARF

objects

nested

within

an

ELF

container.

It

can

be

used

to

validate

the

work

of

a

developer

who

is

accessing

and

manipulating

DWARF

debugging

information.

Changes

for

CDA

in

z/OS

V1R6

CDA

libraries

shipped

with

z/OS

V1R6

include

additional

codeset-conversion

APIs.

These

APIs

handle

the

transfer

of

information

between

ELF

objects

that

use

strings

encoded

in

the

ISO8859-1

codeset,

and

applications

on

the

z/OS

platform

that

use

string

literals

encoded

in

EBCDIC

codeset.

For

more

information,

see

the

codeset-conversion

API

information

in

z/OS

Common

Debug

Architecture

Library

Reference

and

the

initialization

and

termination

consumer

API

information

in

DWARF/ELF

Extensions

Library

Reference.

The

LIBELF_DLL_VERSION

defined

in

libelf.h

has

been

updated

to

02002002

for

the

version

of

the

DLL

that

contains

these

changes.

To

verify

that

the

DLL

version

you

are

using

is

compatible

with

your

code,

always

call

the

elf_dll_version

function

that

passes

the

LIBELF_DLL_VERSION

that

is

expected

by

the

compiled

code,

as

follows:

if

(elf_dll_version(LIBELF_DLL_VERSION))

{

/*

issue

message

to

indicate

incompatible

dll’s

*/

}

If

elf_dll_version

returns

a

value

other

than

zero,

it

probably

indicates

an

attempt

to

use

the

code

with

an

earlier

version

of

ELF/DWARF

support.

Applications

built

with

the

current

version

of

a

DLL

are

not

completely

compatible

with

previous

versions

of

that

DLL.

Note:

Future

ELF/Dwarf

DLLs

will

be

backward

compatible

with

the

current

versions.

This

means

that

any

application

built

with

a

current

version

of

a

DLL

will

continue

to

work,

as

current

DLLs

are

updated.

CDA

requirements

and

recommendations

The

CDA

libraries

are

compiled

with

the

z/OS

C/C++

compiler.

To

provide

flexibility

for

developers

who

want

to

use

the

CDA

application

model,

many

libddpi

objects

have

a

variable-length

user

area.

This

allows

the

developers

to

store

their

own

extra

information

in

the

libddpi

model.

When

you

use

CDA

libraries,

be

aware

of

the

following

requirements

and

recommendations:

v

If

your

application

uses

CDA

libraries

or

utilities,

you

must

compile

it

with

the

XPLINK

compiler

option.

v

To

ensure

the

best

possible

application

performance,

run

applications

with

the

HEAPPOOLS(on)

run-time

option.

Chapter

1.

About

Common

Debug

Architecture

5

|

|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

–

For

31-bit

applications,

you

must

specify

the

HEAPPOOLS(on)

option

in

a

pragma

or

CEEUOPT.

–

For

64-bit

applications,

the

HEAPPOOLS(on)

option

is

the

default.

v

Notice

the

codeset

in

which

strings

are

accepted

and

returned.

By

default,

most

character

strings

accepted

and

returned

by

the

CDA

libraries

are

encoded

in

the

ISO8859-1

codeset.

You

can

use

the

codeset

conversion

APIs

to

change

the

codeset.

For

more

information,

see

z/OS

Common

Debug

Architecture

Library

Reference,

SC09-7654.

For

more

information

about

the

z/OS

C/C++

compiler

options,

see

z/OS

C/C++

User’s

Guide,

SC09-4767.

CDA

limitations

When

you

use

CDA

libraries,

be

aware

of

the

following

limitations:

v

Conversion

support

for

ISD

debugging

information

is

available

only

for

31-bit

object

files,

modules

or

program

objects

built

with:

–

C/C++

for

MVS/ESA

V3R2

or

greater

–

Any

release

of

OS/390

C/C++

–

Any

release

of

z/OS

C/C++

This

support

is

not

intended

to

work

with

debugging

information

generated

by

the

C/370™

or

AD/Cycle®

C/370

compilers.

The

CDA

converter

will

be

updated

to

match

the

TEST

option

support

for

the

version

of

z/OS

with

which

it

is

shipping.

However,

a

lower-level

CDA

converter

might

not

be

able

to

properly

convert

the

debugging

data

generated

by

the

TEST

option

on

a

newer

level

of

the

z/OS

C/C++

compiler.

v

You

must

gather

information

and

call

the

appropriate

libddpi

interface

to

generate

objects

(such

as

Ddpi_Space

and

Ddpi_Process)

that

can

be

used

to

model

the

behavior

of

an

application

under

analysis.

Although

the

libddpi

library

contains

these

objects,

they

are

not

created

automatically

when

the

application

triggers

an

event.

Note:

These

libddpi

objects

were

created

to:

–

Provide

a

structured

information

repository

in

a

common

format

–

Allow

CDA

to

use

expanded

queries

across

a

whole

application,

whether

or

not

the

application

information

is

in

an

ELF

object

file,

or

has

been

modelled

using

libddpi

elements

such

as

Ddpi_Section

6

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Chapter

2.

Overview

of

reading

and

writing

CDA

debugging

information

This

chapter

discusses

how

the

libelf,

libdwarf,

and

libddpi

libraries

work

together

to

access

and

use

debugging

information.

It

requires

that

you

are

familiar

with

the

concepts

in

Chapter

1,

“About

Common

Debug

Architecture,”

on

page

1

and

the

DWARF

format.

For

more

information

about

Debug

Information

Entries

(DIEs)

and

their

structure,

see

DWARF

Debugging

Information

Format.

The

chapter

is

divided

up

into

the

following

sections:

Section

Description

“Creating

an

ELF

descriptor”

This

section

explains

how

libelf

uses

a

file

handle

and

creates

an

ELF

descriptor.

“Writing

DWARF

data

to

the

ELF

object

file”

on

page

10

This

section

explains

how

libelf

and

libdwarf

add

debugging

information

from

the

ELF

descriptor

to

the

ELF

object

file.

“Reading

from

an

ELF

object

file

with

libelf

and

libdwarf”

on

page

11

This

section

explains

how

libelf

and

libdwarf

use

the

debugging

information

from

the

ELF

object

file.

“Reading

from

an

ELF

object

file

with

libelf,

libdwarf,

and

libddpi”

on

page

12

This

section

explains

how

libelf,

libdwarf,

and

libddpi

use

the

debugging

information

from

the

ELF

object

file.

“Accessing

debugging

information”

on

page

15

This

section

explains

how

to

interrupt

the

consuming

process

in

order

to

convert

non-DWARF

debugging

information.

Creating

an

ELF

descriptor

Producer

and

consumer

functions

use

ELF

descriptors

to

access

ELF

object

files.

The

following

diagram

shows

how

an

application

uses

the

libelf

library

to

create

an

ELF

descriptor:

©

Copyright

IBM

Corp.

2004

7

The

following

stages

show

how

producer

or

consumer

functions

create

an

ELF

descriptor

with

calls

to

libelf

functions.

Version check

Open a file opens ELF object file

Initialize an
ELF object

ELF descriptor

Use ELF APIs

Terminate the
ELF descriptor

creates

operates on

terminates

interacts

Figure

1.

Creation

of

an

ELF

descriptor

8

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Stage

Description

Version

check

Since

libelf

is

packaged

as

a

DLL,

this

step

will

check

the

version.

It

is

good

practice

to

validate

that

the

correct

version

of

the

DLL

exists.

For

example:

#include

<dll.h>

{

/*

Verify

existence

of

libelf

DLL

*/

dllhandle*

dll_handle

=

dllload

("CDAEED");

if

(dll_handle

==

NULL)

{

/*

DLL

not

found,

verify

CEE.SCEERUN2

is

in

your

STEPLIB

*/

}

/*

Verify

that

the

current

version

of

the

ELF

DLL

meets

or

exceeds

the

minimum

required

version

*/

if

(elf_dll_version

(LIBELF_DLL_VERSION)

!=

0)

{

/*

DLL

version

mismatch.

-

verify

that

"libelf.h"

comes

from:

"/usr/lpp/cbclib/include/libelf"

-

verify

CEE.SCEERUN2

is

the

first

dataset

on

your

STEPLIB

-

verify

you

have

the

latest

service

level

of

CDA

libraries

*/

}

}

It

is

mandatory

to

perform

a

verification

of

the

ELF

version

before

using

the

other

functions

offered

by

libelf.

For

example:

/*

Verify

that

the

current

version

of

the

ELF

DLL

meets

or

exceeds

the

minimum

required

version

*/

elf_version

(EV_NONE);

if

(elf_version(EV_CURRENT)

==

EV_NONE)

{

/*

libelf

is

out

of

date

*/

}

Open

a

file

The

producer

or

consumer

functions

create

a

file

handle

for

the

ELF

object

file.

This

file

handle

is

used

to

create

an

ELF

descriptor.

Consult

z/OS

C/C++

Run-Time

Library

Reference

for

more

information

on

opening

files

and

creating

file

handles.

Initialize

ELF

descriptor

An

ELF

descriptor

is

required

before

you

can

call

any

other

libelf

functions.

The

file

handle

is

used

to

initialize

libelf

and

create

an

ELF

descriptor

for

the

ELF

object

file.

Which

libelf

function

is

used

depends

on

which

function

is

used

to

create

a

file

handle.

For

example,

if

the

file

handle

is

created

using

fopen,

then

elf_begin_b

is

used.

The

following

code

demonstrates

how

to

use

the

file

pointer

obtained

from

fopen

to

create

the

ELF

descriptor:

Elf*

elf;

/*

ELF

descriptor

*/

FILE*

fp;

/*

File

pointer

*/

/*

Open

test.dbg

for

reading

*/

fp

=

fopen

("test.dbg",

"rb");

/*

Create

ELF

descriptor

for

reading

*/

elf

=

elf_begin_b

(fp,

ELF_C_READ,

NULL);

Operate

on

the

descriptor

After

the

ELF

descriptor

is

initialized,

you

are

free

to

call

any

of

the

libelf

functions.

For

example,

elf_getscn

returns

an

ELF

section,

and

elf_kind

describes

that

section.

Terminate

ELF

descriptor

When

finished

with

the

debugging

information,

the

descriptor

is

terminated

with

elf_end.

Note:

If

you

are

using

the

libdwarf

library,

you

must

terminate

its

objects

before

you

terminate

the

ELF

descriptor.

Close

the

file

handle

after

the

ELF

descriptor

is

terminated.

Chapter

2.

Overview

of

reading

and

writing

CDA

debugging

information

9

|

Writing

DWARF

data

to

the

ELF

object

file

Once

an

ELF

descriptor

has

been

created,

a

producer

application

can

use

it

to

write

DWARF

debugging

information

to

the

ELF

object

file.

This

section

discusses

how

a

producer

application

writes

to

an

ELF

object

file

using

the

libelf

and

libdwarf

libraries.

The

following

diagram

shows

an

overview

of

the

process.

The

following

stages

show

how

a

producer

application

writes

to

an

ELF

object

file

with

calls

to

libelf

and

libdwarf

functions.

Stage

Description

Create

an

ELF

descriptor

Create

an

ELF

descriptor

for

writing.

This

descriptor

will

be

used

to

write

DWARF

debugging

information

into

the

ELF

object

file.

For

more

information,

see

“Creating

an

ELF

descriptor”

on

page

7.

Transform DWARF data

Initialize a
libdwarf object

Use libdwarf APIs

Terminate the
libdwarf object

Terminate the
ELF descriptor

libdwarf

object
producer

ELF
descriptor

creates

creates

operates on

interacts

operates on

terminates

Create an
ELF descriptor

Write the libdwarf object writes

terminates

Figure

2.

Write

to

an

ELF

object

file

10

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Stage

Description

Initialize

a

libdwarf

object

Initialize

the

Dwarf_P_Debug

producer

object.

The

object

is

initialized

using

the

ELF

descriptor.

An

ELF

header

(ehdr)

is

then

created

and

used

to

complete

the

initialization.

The

following

code

demonstrates

how

to

initialize

the

DWARF

producer

object:

Dwarf_P_Debug

dbg;

/*

Producer

DWARF

object

*/

/*

Initialize

libdwarf

producer

instance

*/

flag

=

DW_DLC_WRITE

|

DW_DLC_SIZE_32

|

DW_DLC_ISA_ELF_HDR

|

DW_DLC_STREAM_RELOCATIONS;

dbg

=

dwarf_producer_init_b(

flag,

/*

callback

function

for

creating

ELF

section*/

section_creation_func,

/*

error

handling

callback

function*/

error_handling_func,

/*

arguments

to

be

passed

into

error_handling_func*/

"error

arguments",

&dwarf_error

);

Note:

The

ehdr

is

extracted

from

the

descriptor.

An

update

to

the

header

will

update

the

descriptor.

/*

Create

the

ELF

header

*/

ehdr

=

elf32_newehdr(elf);

/*

Initialize

the

ELF

header

*/

ehdr->e_type

=

ET_REL;

ehdr->e_machine

=

EM_S390;

ehdr->e_version

=

EV_CURRENT;

dwarf_producer_target(dbg,

elf,

&dwarf_error);

Use

libdwarf

APIs

libdwarf

producer

functions

are

called

to

add

DWARF

debugging

information

to

the

ELF

object

file.

For

example,

dwarf_add_line_entry

will

add

one

line-number

statement

to

the

line

number

program

matrix.

dwarf_new_die

will

create

a

new

DIE

with

a

given

DIE

tag.

Transform

DWARF

data

dwarf_transform_to_disk_form

must

be

called

to

format

the

DWARF

debugging

information

before

it

can

be

written

to

the

file.

That

is,

the

debugging

information

in

the

Dwarf_P_Debug

object

must

conform

to

the

actual

binary

representation

of

the

ELF

object

file.

Write

the

libdwarf

object

The

data

is

written

to

the

ELF

object

file

by

calling

dwarf_producer_write_elf.

libdwarf

interacts

with

libelf

to

write

all

the

gathered

debug

sections

to

the

ELF

object

file

that

is

managed

by

the

ELF

descriptor.

Terminate

the

libdwarf

object

dwarf_producer_finish

is

called

to

terminate

the

Dwarf_P_Debug

object.

Terminate

the

ELF

descriptor

The

ELF

descriptor

is

terminated

with

elf_end.

Reading

from

an

ELF

object

file

with

libelf

and

libdwarf

Once

a

descriptor

has

been

created,

consumer

functions

can

use

it

to

read

the

DWARF

debugging

information

from

the

ELF

object

file.

This

section

discusses

how

consumer

functions

read

from

an

ELF

object

file

using

the

libelf

and

libdwarf

libraries.

The

following

diagram

shows

an

overview

of

the

process.

Chapter

2.

Overview

of

reading

and

writing

CDA

debugging

information

11

The

following

table

shows

the

stages

of

reading

from

an

ELF

descriptor

with

calls

to

libelf

and

libdwarf

functions.

Stage

Description

Create

an

ELF

descriptor

Create

an

ELF

descriptor

for

reading.

This

descriptor

will

be

used

to

access

the

DWARF

debugging

information

in

the

ELF

object

file.

For

more

information,

see

“Creating

an

ELF

descriptor”

on

page

7.

Initialize

a

libdwarf

object

Initialize

the

Dwarf_Debug

consumer

object

by

calling

dwarf_elf_init,

using

the

ELF

descriptor.

libdwarf

sets

up

the

consumer

libdwarf

object

to

be

able

to

load

debugging

information

from

the

ELF

descriptor.

Use

libdwarf

APIs

libdwarf

functions

are

called

to

retrieve

the

DWARF

data.

For

example,

dwarf_get_globals

will

retrieve

the

list

of

global

symbol

entries,

and

dwarf_get_dies_given_name

will

return

a

list

of

DIEs

in

a

section

that

match

the

given

name.

Terminate

the

libdwarf

object

dwarf_finish

is

called

to

terminate

the

Dwarf_Debug

object.

Terminate

the

ELF

descriptor

The

ELF

descriptor

is

terminated

with

elf_end.

Reading

from

an

ELF

object

file

with

libelf,

libdwarf,

and

libddpi

Once

a

descriptor

has

been

created,

consumer

functions

can

use

it

to

read

the

DWARF

debugging

information

from

the

ELF

object

file.

This

section

discusses

how

consumer

functions

reads

from

an

ELF

object

file

using

the

libelf,

libdwarf,

and

libddpi

libraries.

Note:

The

concepts

in

this

section

are

based

on

“Reading

from

an

ELF

object

file

with

libelf

and

libdwarf”

on

page

11.

Initialize a
libdwarf object

Use libdwarf APIs

Terminate the
libdwarf object

Terminate the
ELF descriptor

libdwarf
consumer
object

ELF
descriptor

creates

creates

interactsoperates on

terminates

Create an
ELF descriptor

terminates

Figure

3.

Read

from

an

ELF

object

file

with

libelf

and

libdwarf

12

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

The

following

diagram

shows

an

overview

of

the

process.

The

following

stages

show

how

consumer

functions

read

from

an

ELF

object

file

using

the

libelf,

libdwarf,

and

libddpi

libraries.

Stage

Description

Initialize

libddpi

object

Call

ddpi_init

to

create

a

Ddpi_Info

object.

Ddpi_Info

is

a

starting

point

that

tracks:

v

The

objects

that

model

the

application

environment

v

The

ELF

object(s)

v

The

DWARF

object(s)

Find the ELF object file

Model the executable module

Retrieve the module information

Relocate the ELF object file

Initialize the libdwarf object

Notify the libddpi object

Use the libdwarf and libddpi APIs

Terminate the libdwarf object

Terminate the ELF descriptor

libdwarf
consumer
object

libddpi
object

creates

creates

creates

creates

operates on

terminates

starts

writes

loads

reads

reads

relocates

Initialize the libddpi object

Terminate the libddpi object

Executable module

Create an ELF descriptor

Run-time
conversion

ELF
descriptor

terminates

terminates

Figure

4.

Read

from

an

ELF

object

file

with

libelf,

libdwarf,

and

libddpi

Chapter

2.

Overview

of

reading

and

writing

CDA

debugging

information

13

Stage

Description

Model

the

executable

module

Use

libddpi

functions

to

retrieve

information

from

the

executable

module.

For

example:

v

ddpi_space_create

represents

the

address

space

in

which

the

executable

module

resides

v

ddpi_storagelocn_create

provides

access

to

user

storage

v

ddpi_module_create

represents

the

actual

executable

module

v

ddpi_entrypt_create

represents

the

entry

point

of

the

executable

module

Retrieve

module

information

Call

ddpi_module_extract_C_CPP_information.

This

function

identifies

all

the

compilation

units

(CU)

in

the

executable

module,

then

creates

a

Ddpi_Elf

object

to

represent

each

CU.

Each

object

holds

the

necessary

information

to

load

the

DWARF

debugging

information

that

is

in

the

CU.

Find

ELF

object

file

Call

ddpi_elf_get_elf_file_name

to

search

for

the

name

of

an

ELF

object

file.

If

the

file

name

can

not

be

found

it

returns

DW_DLV_NO

ENTRY,

which

indicates

that

this

CU

is

not

compiled

with

the

DEBUG(FORMAT(DWARF))

option.

The

debugging

information

may

need

to

be

converted

to

DWARF

before

calling

any

other

CDA-compliant

APIs.

For

more

information,

see

“Accessing

debugging

information”

on

page

15.

Create

ELF

descriptor

Open

the

ELF

object

file

for

reading

and

create

an

ELF

descriptor.

This

descriptor

will

be

used

to

access

the

DWARF

debugging

information

in

the

ELF

object

file.

For

more

information,

see

“Creating

an

ELF

descriptor”

on

page

7

Relocate

ELF

object

file

Call

ddpi_elf_load_cu

to

relocate

the

ELF

object

file.

This

ensures

that

the

addresses

within

the

file

are

the

same

as

the

addresses

within

the

executable

module.

For

more

information,

see

“Steps

for

preparing

the

debug_ppa

section”

on

page

21.

Initialize

the

libdwarf

object

Initialize

the

Dwarf_Debug

consumer

object

by

calling

dwarf_elf_init

and

using

the

ELF

descriptor.

Notify

libddpi

object

about

libdwarf

object.

Call

ddpi_access_set_debug

to

let

the

Ddpi_Info

object

know

about

the

newly

created

DWARF

consumer

object.

This

is

done

only

once

per

module/program

object.

Use

libdwarf

and

libddpi

functions

libdwarf

functions

are

called

to

retrieve

the

DWARF

data.

For

example,

dwarf_get_globals

will

retrieve

the

list

of

global

symbol

entries,

and

ddpi_module_get_major_name

will

retrieve

the

major

name

from

the

given

Ddpi_Module

object.

Terminate

the

libdwarf

object

dwarf_finish

is

called

to

terminate

the

Dwarf_Debug

object.

Terminate

ELF

descriptor

The

ELF

descriptor

is

terminated

with

elf_end.

Terminate

the

libddpi

objects

ddpi_finish

is

called

to

terminate

the

Ddpi_Info

object.

14

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

|

|

Accessing

debugging

information

This

section

discusses

how

to

set

up

access

to

the

debugging

information

in

the

executable

module.

There

are

two

possible

types

of

debugging

information:

v

Debugging

information

compiled

with

IBM

z/OS

C

and

C++

compilers

v

Debugging

information

compiled

with

another

compiler

The

libddpi

library

contains

functions

that

have

been

created

specifically

to

set

up

access

to

executable

modules

created

with

the

z/OS

C/C++

compilers.

Accordingly,

most

of

this

section

discusses

how

to

use

these

functions.

Note:

If

a

module

has

been

created

with

another

compiler,

more

development

must

be

done

to

take

the

place

of

these

functions.

For

more

information,

see

“Accessing

non-z/OS

C/C++

debugging

information”

on

page

16.

Accessing

z/OS

C/C++

debugging

information

This

section

applies

to

all

modules/program

objects

that

have

been

compiled

with

the

z/OS

C

and

C++

compilers.

These

modules

contain

information

that

allows

libddpi

APIs

to

gain

access

to

the

relevant

debugging

information.

The

ddpi_module_extract_C_CPP_information

API

can

determine

if

the

executable

module

is

made

up

of

z/OS

C/C++

compilation

units

(CUs).

If

so,

the

API:

v

Identifies

all

the

C/C++

CUs

within

the

module

and

creates

a

Ddpi_Elf

object

for

each

CU

v

Locates

the

ELF

object

file

for

each

CU

The

recommended

method

for

creating

DWARF

debugging

information

for

a

module/program

object

is

by

compiling

it

with

the

z/OS

C/C++

DEBUG

compiler

option.

This

creates

CU

objects,

each

with

its

own

ELF

object

file.

Each

CU

object

contains

the

name

and

location

of

the

corresponding

ELF

object

file

and

an

MD5

signature.

Note:

For

more

information

about

the

DEBUG

option,

refer

to

the

z/OS

C/C++

User’s

Guide.

If

a

CU

object

was

created

with

the

DEBUG

compiler

option,

the

ddpi_elf_get_elf_file_name

API

can

retrieve

the

name

and

location

of

the

corresponding

ELF

object

file,

otherwise,

it

returns

DW_DLV_NO_ENTRY.

If

the

location

of

the

ELF

object

file

cannot

be

determined,

you

must

provide

the

location

of

an

ELF

object

file

if

it

exists,

or

initialize

a

conversion

process.

For

more

information,

see

“Accessing

and

converting

ISD

information”

on

page

16.

Finally,

the

addresses

within

the

ELF

object

file

must

be

relocated

to

match

the

loaded

executable

module.

The

ddpi_elf_load_cu

API:

v

Verifies

the

contents

of

the

ELF

object

file

by

making

sure

that

the

MD5

signature

within

the

CU

object

and

the

ELF

object

file

is

the

same

v

Relocates

the

ELF

object

file

using

the

data

found

within

the

.debug_ppa

section

Note:

For

more

information

about

the

using

the

.debug_ppa

section

for

relocations,

see

“Steps

for

preparing

the

debug_ppa

section”

on

page

21.

Chapter

2.

Overview

of

reading

and

writing

CDA

debugging

information

15

|

|
|

|

|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

|
|

Accessing

and

converting

ISD

information

CDA

defines

consumer

functions

that

process

DWARF

debugging

information.

If

the

debugging

information

is

in

a

non-DWARF

format,

it

has

to

be

converted

before

it

can

be

used

by

the

CDA

libraries.

ISD

information

is

created

by

compiling

with

the

IBM

z/OS

C/C++

compiler

with

the

TEST

compiler

option.

Unlike

the

DEBUG

compiler

option,

the

TEST

compiler

option

does

not

create

an

ELF

object

file.

To

use

ISD

information,

it

must

be

converted

to

an

ELF

object

file.

There

are

two

methods

that

can

be

used

to

convert

ISD

information:

v

isdcnvt

utility

This

stand-alone

utility

extracts

ISD

information

from

within

CU

object

files

and

converts

it

to

the

DWARF

format

in

an

ELF

object

file.

You

can

use

this

to

create

all

the

ELF

object

files

for

the

CU

objects

that

must

be

created

before

you

can

debug

information

within

the

CU

objects.

Because

the

location

of

the

ELF

object

file

is

not

recorded

within

the

CU

object

file,

it

is

your

responsibility

to

locate

the

converted

ELF

object

file

when

accessing

debug

information

in

these

CU

objects.

Note:

For

more

information

about

the

isdcnvt

utility,

see

Chapter

6,

“In

Storage

Debug

(ISD)

Information

Conversion

Utility,”

on

page

31.

v

libddpi

conversion

APIs

The

ddpi_convert_c_cpp_isdobj

and

ddpi_fp_convert_c_cpp_isdobj

functions

can

be

called

by

any

libddpi

user

during

run

time

to

convert

CU

objects

containing

ISD

information

into

DWARF

format.

If

you

are

converting

a

CU

object

that

is

part

of

a

loaded

executable

module,

it

is

not

necessary

to

relocate

the

resulting

ELF

object

file.

Note:

This

method

affects

run-time

performance.

For

more

information

see

z/OS

Common

Debug

Architecture

Library

Reference.

Accessing

non-z/OS

C/C++

debugging

information

Extraction

is

started

by

calling

the

ddpi_module_extract_C_CPP_information

function.

If

the

executable

module

was

not

compiled

with

the

IBM

z/OS

C/C++

compiler,

then

the

format

of

the

debugging

information

will

be

unknown

to

the

CDA

libraries.

You

must

create

your

own

conversion

process

in

order

to

use

the

CDA

libraries.

That

is,

you

will

be

responsible

for

identifying

the

CUs

within

the

executable

module,

and

adding

the

necessary

information

within

the

Ddpi_Elf

objects.

For

more

information

on

how

to

create

a

converter

application,

see

Chapter

4,

“Using

producer

APIs,”

on

page

21.

16

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

|

|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

Chapter

3.

Using

consumer

functions

This

chapter

explains

how

to

create

a

CDA-compliant

consumer

application

that

uses

the

libelf

and

libdwarf

libraries.

It

provides

an

example

of

the

basic

structure

for

a

libdwarf

application

that

reads

ELF

object

files.

Note:

This

chapter

requires

that

you

are

familiar

with

the

DWARF

format.

For

more

information

about

DIEs

and

their

structure,

see

DWARF/ELF

Extensions

Library

Reference.

This

process

is

discussed

in

the

following

three

sections:

v

Initializing

libelf

and

libdwarf

v

Consuming

DWARF

data

v

Terminating

libelf

and

libdwarf

Note:

ELF

object

files

are

created

by

the

isdcnvt

utility,

or

by

the

DEBUG

option

of

the

z/OS

C/C++

compiler.

Initializing

libelf

and

libdwarf

This

section

describes

how

the

consumer

application

initializes

libdwarf

with

the

data

to

be

consumed.

This

section

may

serve

as

a

model

for

other

libdwarf

consumer

applications.

Initialization

process

The

following

is

an

overview

of

the

libdwarf

initialization

process.

Stage

Description

Identify

the

ELF

object

file

Identify

the

ELF

object

file

containing

the

data

to

be

used.

Create

an

ELF

descriptor

Create

an

ELF

descriptor

to

represent

the

data

in

the

file.

Create

a

Dwarf_Debug

object

Create

a

Dwarf_Debug

object

to

represent

the

DWARF

data

contained

within

the

ELF

descriptor.

The

application

uses

the

elf_begin

function

to

create

an

ELF

descriptor.

This

function

requires

a

file

descriptor

for

the

ELF

object

file.

For

example,

the

application

is

given

the

name

of

the

file

from

a

command

line

parameter.

It

then

acquires

the

descriptor

with

the

following

code:

fd

=

open(opts.file_name,

O_RDONLY);

The

next

step

is

to

create

an

ELF

descriptor

with

the

given

ELF

object

file,

using

the

following

code:

Elf_Cmd

cmd

=

ELF_C_READ;

Elf

*elf;

elf

=

elf_begin(fd,

cmd,

NULL);

Note:

Other

functions

that

can

be

used

are

elf_begin_b

and

elf_begin_c.

Consult

the

libelf

documentation

for

details

on

using

these

functions.

©

Copyright

IBM

Corp.

2004

17

|

|||

||
|

||
|

||
|
|
|

The

application

then

determines

if

the

ELF

descriptor

represents

a

32-bit

ELF

object

or

a

64-bit

ELF

object.

It

uses

the

elf32_getehdr

and

elf64_getehdr

functions.

For

example:

Elf32_Ehdr

*eh32;

Elf64_Ehdr

*eh64;

eh32

=

elf32_getehdr(elf);

eh64

=

elf64_getehdr(elf);

After

this

sequence

the

ELF

descriptor

has

been

identified

as:

v

32

bit

if

eh32

is

not

NULL

v

64

bit

if

eh32

is

NULL,

and

eh64

is

not

NULL

v

Unknown

if

eh32

and

eh64

are

both

NULL

If

the

object

format

is

unknown,

then

the

application

ignores

the

object

and

exits.

Otherwise,

it

continues

to

create

a

Dwarf_Debug

object.

The

following

code

creates

a

Dwarf_Debug

object:

Dwarf_Error

err;

Dwarf_Debug

dbg;

int

dres;

dres

=

dwarf_elf_init(elf,

DW_DLC_READ,

NULL,

NULL,

&dbg,

&err);

It

is

important

to

check

the

return

code

to

ensure

that

the

processing

succeeded.

dwarf_elf_init

returns

DW_DLV_OK

on

successful

completion.

It

returns

DW_DLV_ERROR

if

an

error

occurs.

dwarf_elf_init

returns

DW_DLV_NO_ENTRY

if

the

ELF

descriptor

does

not

contain

DWARF

data.

If

the

processing

was

successful,

then

dbg

contains

the

Dwarf_Debug

object

which

is

used

to

interact

with

libdwarf.

Consuming

DWARF

data

Once

a

Dwarf_Debug

object

has

been

created

its

data

may

be

used

by

the

application.

This

section

discusses

how

the

application

uses

libdwarf

functions

to

extract

information

from

its

DWARF

objects.

That

is,

it

discusses

how

to:

v

Traverse

the

Debug

Information

Entry

(DIE)

hierarchy

v

Access

information

contained

in

DIEs

Traversing

the

DIE

hierarchy

This

section

describes

how

to

traverse

the

DIE

hierarchy

in

the

.debug_ppa

section.

This

can

be

used

as

an

example

for

traversing

any

DWARF

DIE

section.

The

first

step

is

to

obtain

a

Dwarf_Section

object

representing

the

.debug_ppa

section.

For

example:

dwarf_debug_section(dbg,

DW_SECTION_DEBUG_PPA,

DW_SECTION_IS_DEBUG_DATA,

§ion,

&err);

Now

that

the

application

has

the

.debug_ppa

section

,

it

will

step

through

all

the

unit

headers

with

the

following

code:

/*

Loop

until

it

returns

0

*/

unit_offset

=

0;

while(

(nres

=

dwarf_next_unit_header(dbg,

section,

&unit_header_length,

&version_stamp,

18

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

&abbrev_offset,

&address_size,

&next_unit_offset,

&err)

)

==

DW_DLV_OK

)

{

/*

Process

this

unit

header.

*/

unit_offset

=

next_unit_offset;

}

For

each

iteration

of

the

above

loop,

the

application

obtains

the

root

DIE

of

that

unit

using

the

following

call:

dwarf_rootof(section,

unit_offset,

&root_die,

&err);

Once

the

application

has

the

root

DIE,

it

can

traverse

all

children

of

the

root

DIE

using

the

dwarf_child

function

as

follows:

dwarf_child(in_die,

&child,

&err);

The

in_die

variable

is

the

root

DIE.

The

application

continues

processing

children

until

the

above

call

returns

DW_DLV_NOENTRY

indicating

that

it

has

reached

the

bottom

of

the

hierarchy.

The

application

now

proceeds

to

traverse

the

siblings

of

the

root

DIE

with

the

dwarf_siblingof

function.

For

example:

dwarf_siblingof(dbg,

in_die,

&sibling,

&err);

Accessing

information

in

a

DIE

This

section

lists

the

libdwarf

functions

used

by

application

to

access

data

within

a

DIE.

Table

3.

DIE

access

functions

Call

Description

dwarf_tag(

die,

&tag,

&err

);

This

call

retrieves

the

TAG

of

a

DIE.

dwarf_diename(

dbg,

&tagname,

&err

);

This

call

retrieves

the

name

of

a

TAG.

dwarf_dieoffset(

die,

&overall_offset,

&err

);

This

call

retrieves

the

overall

offset

of

a

DIE.

dwarf_die_CU_offset(

die,

&offset,

&err

);

This

call

retrieves

the

offset

of

a

DIE

within

a

given

compilation

unit.

dwarf_attrlist(

die,

&atlist,

&atcnt,

&err

);

This

call

retrieves

a

list

of

the

attributes

for

a

DIE.

dwarf_formudata(

attrib,

&val,

&err

);

This

call

retrieves

the

unsigned

value

of

a

given

attribute.

dwarf_whatform(

attrib,

&theform,

&err

);

This

call

retrieves

the

form

of

a

given

attribute.

Chapter

3.

Using

consumer

functions

19

Terminating

libelf

and

libdwarf

This

section

discusses

how

the

application

terminates

its

interaction

with

libdwarf

and

the

associated

ELF

descriptors.

Termination

is

done

in

the

opposite

order

from

initialization.

That

is,

first

the

Dwarf_Debug

object

is

terminated,

then

the

ELF

descriptor.

The

application

terminates

the

Dwarf_Debug

object

with

the

following

code:

dwarf_finish(dbg,

&err);

When

the

Dwarf_Debug

object

has

been

terminated,

the

application

terminates

the

ELF

descriptor

with

the

following

code:

elf_end(elf);

20

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Chapter

4.

Using

producer

APIs

This

chapter

explains

how

to

create

a

producer

application

that

converts

ISD

debugging

information

into

the

DWARF

format.

In

this

case,

only

the

libelf

and

libdwarf

libraries

are

used.

The

example

is

similar

to

the

isdcnvt

utility

which

uses

the

libddpi

conversion

functions.

Note:

This

chapter

requires

that

you

are

familiar

with

the

DWARF

format.

For

more

information

about

DIEs

and

their

structure,

see

DWARF/ELF

Extensions

Library

Reference.

The

discussion

is

divided

into

the

following

sections:

v

“Steps

for

converting

a

line-number

table”

v

“Steps

for

preparing

the

debug_ppa

section”

v

“Steps

for

converting

symbols”

on

page

22

Finally,

an

overview

example

is

presented

at

the

end

of

this

chapter.

Steps

for

converting

a

line-number

table

Before

you

begin:

Create

a

CU

DIE

to

hold

the

ISD

information.

Complete

the

following

steps

to

create

a

line-number

table.

1.

Create

a

.debug_line

section

by

calling

dwarf_add_section_to_debug.

2.

For

each

of

the

PPA1s

a.

Either

call

dwarf_global_linetable

to

add

line

number

information

to

the

CU

DIE,

or

call

dwarf_subprogram_linetable

to

add

line

number

information

to

the

subprogram

DIE.

b.

Call

dwarf_lne_set_address

to

set

the

relative

address

at

the

beginning

of

the

block

of

lines.

c.

Call

dwarf_add_line_entry

or

dwarf_add_line_entry_b

for

each

of

the

line-number

entries.

d.

Call

dwarf_lne_end_sequence

to

set

the

address

at

the

end

of

the

block

of

lines.

The

CU

DIE

is

complete,

and

you

are

ready

to

prepare

the

.debug_ppa

section.

Steps

for

preparing

the

debug_ppa

section

This

section

assumes

that

each

CU

has

a

corresponding

ELF

object

file,

and

that

the

file

contains

the

addresses

of

object

information

within

the

CU.

When

the

CU

is

loaded

into

a

memory

image,

the

addresses

of

the

object

information

are

changed

to

available

memory

addresses.

When

the

ELF

object

file

is

loaded,

the

addresses

it

contains

must

be

properly

relocated

to

match

the

new

memory

addresses

of

the

CU

information.

The

information

in

the

PPA1

and

PPA2

blocks

of

the

object

file

are

the

key

addresses

that

can

be

used

to

relocate

the

ELF

object

file.

This

section

shows

how

to

record

the

address

of

the

PPA1

and

PPA2

blocks

in

the

CU,

and

how

to

create

an

MD5

signature

for

the

ELF

object.

©

Copyright

IBM

Corp.

2004

21

Complete

the

following

steps

to

create

a

.debug_ppa

section.

1.

Create

a

.debug_ppa

section

by

calling

dwarf_add_section_to_debug.

2.

Create

a

PPA2

DIE

and

add

it

to

the

.debug_ppa

section

by

calling

dwarf_add_die_to_debug_section.

3.

Create

an

MD5

signature

and

add

it

to

the

PPA2

DIE

by

calling

dwarf_add_AT_name.

The

.debug_ppa

section

is

complete,

and

you

are

ready

to

convert

the

symbols.

Steps

for

converting

symbols

Converting

symbols

means

creating

DIEs

for

the

symbol

and

for

the

type

of

symbol.

The

parent

of

a

global

symbol

is

the

CU

DIE.

The

parent

of

a

local

symbol

is

the

DIE

for

the

block

containing

this

symbol.

To

convert

a

symbol:

1.

Create

a

DIE.

Call

dwarf_new_die.

If

a

DIE

is

initially

created

with

a

NULL

parent,

it

can

be

linked

later

by

calling

dwarf_die_link.

2.

Add

the

applicable

attributes

to

the

DIE.

Attributes

are

added

by

calling

the

following

functions:

v

dwarf_add_AT_reference

adds

a

reference

to

another

DIE,

such

as

the

type

DIE

v

dwarf_add_AT_flag

adds

a

true

or

false

attribute

v

dwarf_add_AT_targ_address

adds

an

address

attribute

v

dwarf_add_AT_location_expr

adds

a

location-expression

attribute.

For

more

information,

see

“Location

expressions”

on

page

23.

v

dwarf_add_AT_name

adds

a

name

to

the

DIE

v

dwarf_add_AT_unsigned_const

adds

an

unsigned

constant

as

an

attribute

v

dwarf_add_AT_reference_with_reloc

adds

a

reference

to

a

CU

DIE,

so

that

relocation

entries

are

created

All

of

the

information

about

the

symbol

has

been

added

to

DIEs,

and

the

DIEs

have

been

linked.

The

producer

application

is

complete.

Additional

steps

The

following

lists

additional

steps

for

certain

types

of

symbols:

v

If

the

symbol

is

a

function,

then

create

a

PPA1

DIE

and

make

it

a

child

of

the

PPA2

DIE.

v

If

the

symbol

is

a

non-static

global

variable

or

function,

then

add

it

to

the

.debug_pubnames

section

by

calling

dwarf_add_pubname.

v

If

the

symbol

is

a

static

variable,

then

add

it

to

the

.debug_varnames

section

by

calling

dwarf_add_varname.

22

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

v

If

the

symbol

is

a

static

function,

then

add

it

to

the

.debug_funcnames

section

by

calling

dwarf_add_funcname.

Location

expressions

Location

expressions

are

created

by

calling

dwarf_new_expr.

Operations

are

added

to

the

location

expression

by

calling

the

following

functions:

v

dwarf_add_expr_gen

is

a

generic

function

that

adds

an

operator

and

possibly

some

operands

v

dwarf_add_expr_addr

adds

the

DW_OP_addr

operator

and

an

address

v

dwarf_add_expr_reg

adds

the

DW_OP_reg

operator

for

the

given

register

number

v

dwarf_add_expr_breg

adds

the

DW_OP_breg

operator

for

the

given

register

number

Example

of

converting

a

symbol

Before

you

begin:

You

need

to

have

created

a

CU

DIE.

This

example

shows

how

to

convert

a

global

variable

integer

(myvar).

1.

Create

an

int

DIE

if

it

has

not

already

been

created.

a.

Call

dwarf_new_die.

The

tag

is

DW_TAG_base_type,

the

parent

is

the

CU

DIE,

the

child

is

NULL,

and

the

left

and

right

siblings

are

NULL.

b.

Call

dwarf_add_AT_name

for

the

type

DIE,

giving

it

the

name

int.

c.

Call

dwarf_add_AT_unsigned_const

for

the

type

DIE

to

add

the

encoding.

The

attribute

should

be

DW_AT_encoding,

and

the

value

should

be

DW_ATE_signed.

d.

Call

dwarf_add_AT_unsigned_const

one

more

time

to

add

the

byte

size.

The

attribute

should

be

DW_AT_byte_size,

and

the

value

should

be

4.

2.

Call

dwarf_new_die.

The

tag

is

DW_TAG_variable,

the

parent

is

the

CU

DIE,

the

child

is

NULL,

and

the

left

and

right

siblings

are

NULL.

3.

Call

dwarf_add_AT_name

to

add

a

name

myvar

to

the

variable

DIE.

4.

Call

dwarf_add_AT_reference

to

add

the

type

DIE

as

an

attribute

of

the

variable

DIE.

The

attribute

is

DW_AT_type.

5.

Call

dwarf_add_AT_flag

to

add

the

external

flag

to

the

variable

DIE.

The

attribute

is

DW_AT_external,

and

the

value

is

true.

6.

Call

the

following

functions:

v

dwarf_new_expr

to

create

a

location

expression

v

dwarf_add_expr_gen,

dwarf_add_expr_addr,

dwarf_add_expr_reg

to

add

operations

to

the

location

expression

v

dwarf_add_expr_breg

to

add

operations

to

the

location

expression

(optional)

v

dwarf_add_AT_location_expr

to

add

the

location

expression

to

the

variable

DIE

(the

attribute

is

DW_AT_location)

Chapter

4.

Using

producer

APIs

23

All

of

the

information

about

the

global

variable

has

been

added

to

DIEs.

Conversion

is

now

complete.

24

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Chapter

5.

Using

consumer

and

producer

functions

This

chapter

shows

how

to

create

an

application

that

both

creates

and

uses

DWARF

debugging

information.

In

most

cases

DWARF

debugging

information

will

be

produced

by

the

z/OS

C/C++

compiler.

Therefore,

most

applications

will

need

only

the

CDA

consumer

functions.

However,

if

only

ISD

information

is

available,

then

the

applications

may

need

to

use

CDA

producer

functions

to

generate

DWARF

debugging

information.

For

this

reason,

the

sample

code

demonstrates

the

use

of

both

CDA

producer

and

consumer

functions.

The

example

in

this

chapter

uses

the

libelf,

libdwarf,

and

libddpi

libraries.

It

converts

ISD

debugging

information

to

the

DWARF

format

during

run

time

by

directly

calling

the

converter

function

in

libddpi.

The

example

also

shows

how

to

use

the

libdwarf

producer

functions,

once

the

DWARF

debugging

information

becomes

available.

This

example

is

not

meant

to

be

comprehensive.

Note:

For

more

information

about

conversion,

see

Chapter

4,

“Using

producer

APIs,”

on

page

21

and

Chapter

6,

“In

Storage

Debug

(ISD)

Information

Conversion

Utility,”

on

page

31.

The

example

files

are

delivered

in

the

demo

package,

which

is

found

in

the

/usr/lpp/cbclib/source

directory.

The

package

contains:

v

hello_isd.c,

a

C-source

file

which

will

be

compiled

with

the

TEST

compiler

option

v

hello_dwarf.c,

a

C

source

file

which

will

be

compiled

with

the

DEBUG

compiler

option

v

demoa.s,

an

assembler

source,

which

implements

a

function

to

determine

the

size

of

a

module

loaded

in

storage

v

democ.c,

a

C

program,

which

demonstrates

the

use

of

functions

of

the

CDA

libraries.

v

Makefile,

a

makefile

v

README,

which

is

the

basis

of

the

content

of

this

chapter

hello_isd.c

and

hello_dwarf.c

create

the

program

whose

debugging

information

is

the

subject

of

this

example.

The

two

objects

produced

from

these

source

files

are

linked

into

an

HFS

module

(hello)

which

resides

in

the

current

directory.

democ.c

contains

the

logic

that

demonstrates

the

use

of

the

producer

and

consumer

functions.

democ.c

will

v

Load

the

hello

module

into

storage.

v

Create

libdwarf

consumer

objects

for

all

available

debugging

information.

v

Print

out

the

names

of

all

global

symbols

found

in

the

hello

module.

Creating

a

consumer

application

with

conversion

This

example

is

divided

into

three

sections:

v

“Initializing

the

libddpi

environment”

on

page

26

v

“Creating

and

using

consumer

objects”

on

page

27

v

“Terminating

the

objects”

on

page

28

Note:

The

concepts

and

terms

used

in

this

section

are

based

on

explanations

in

“Accessing

debugging

information”

on

page

15.

©

Copyright

IBM

Corp.

2004

25

Initializing

the

libddpi

environment

This

section

explains

how

to

create

and

load

a

module,

and

set

up

the

environment

in

order

to

use

the

libddpi

functions.

Perform

the

following

steps

to

create

an

application

that

converts

ISD

information

into

an

ELF

descriptor,

then

uses

that

descriptor.

1.

Makefile

compiles

hello_isd.c

into

the

hello_isd.o

object

file,

which

contains

ISD

information.

The

file

resides

in

the

current

directory.

For

more

information

about

the

required

compiler

options,

see

“CDA

requirements

and

recommendations”

on

page

5.

2.

Makefile

compiles

hello_dwarf.c

into

the

hello_dwarf.o

object

file

and

the

hello_dwarf.dbg

ELF

object

file.

Only

hello_dwarf.dbg

contains

the

DWARF

debugging

information.

Both

files

reside

in

the

current

directory.

For

more

information

about

the

required

compiler

options,

see

“CDA

requirements

and

recommendations”

on

page

5.

3.

Makefile

links

hello_isd.o

and

hello_dwarf.o

into

an

HFS

module

(hello).

Makefile

now

runs

democ.c

which

controls

the

rest

of

this

process.

4.

The

hello

module

is

loaded

into

storage

using

the

BPX1LOD

USS

Kernel

interface.

5.

The

__lmsize

assembler

function

determines

the

size

of

the

hello

module

loaded

in

storage.

This

value

will

be

used

to

create

a

Ddpi_Space

object

in

step

8.

__lmsize

is

implemented

in

the

demoa.s

assembler

file.

6.

The

following

functions

are

called

to

verify

that

the

current

versions

of

the

DLLs

meet

or

exceed

the

minimum

required

version:

v

elf_build_version

v

dwarf_build_version

v

ddpi_build_version

7.

ddpi_init

initializes

the

libddpi

environment.

Before

the

libddpi

functions

can

be

used,

the

environment

must

be

initialized

with

ddpi_init.

This

creates

a

Ddpi_Info

object,

which

holds

information

about

the

module

loaded

in

storage.

8.

ddpi_space_create

creates

a

Ddpi_Space

object

which

holds

information

about

the

hello

module.

9.

ddpi_storagelocn_create

creates

a

storage

location

object

(Ddpi_StorageLocn)

which

holds

the

storage-location

information

of

the

hello

module.

26

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

10.

ddpi_storagelocn_get_space

obtains

an

associated

space

object

from

a

given

location

object.

The

information

about

the

module

is

kept

in

the

space

object,

so

the

space

object

is

set

as

the

module

owner.

In

this

example,

the

space

object

has

just

been

created,

and

could

immediately

be

set

as

the

owner.

However,

it

is

more

likely

that

ownership

will

be

set

after

several

objects

have

been

created.

The

Ddpi_StorageLocn

is

the

recommended

interface

to

the

Ddpi_Space

object.

11.

ddpi_module_create

creates

a

Ddpi_Module

object

that

represents

the

hello

module.

12.

ddpi_class_create

creates

a

class

object

of

type

Ddpi_CT_Program_code.

This

class

maps

the

portion

of

memory

occupied

by

hello.

Certain

portions

of

memory

occupied

by

the

module

are

mapped

according

to

their

use,

such

as

program

code,

WSA,

or

heap.

ddpi_class_create

is

called

to

create

a

class

object

that

maps

the

storage

occupied

by

the

program

code,

as

this

is

the

location

of

the

debugging

information.

13.

ddpi_entrypt_create

describes

the

entry

point

of

the

module.

The

entry

point

of

the

module

is

the

key

to

finding

the

debugging

information

in

the

program

code.

14.

ddpi_module_extract_C_CPP_information

goes

through

the

module

and

identifies

the

CUs.

This

function

creates

a

list

of

Ddpi_Elf

objects,

each

representing

a

CU

found

in

the

module.

This

includes

CUs

that

have

non-DWARF

debugging

information.

The

consumer

application

can

now

start

to

create

consumer

objects.

Creating

and

using

consumer

objects

ddpi_module_extract_C_CPP_information

identifies

each

CU

in

the

module.

It

is

necessary

to

determine

the

format

of

the

available

debugging

information.

If

DWARF

debugging

information

is

available

then

the

ELF

object

file

can

be

used.

If

ISD

information

is

available,

then

it

can

be

converted

to

DWARF

using

the

ISD

converter

functions.

If

the

debugging

information

is

in

neither

format,

then

you

must

supply

your

own

converter

function.

The

following

steps

describe

how

to

find

CUs

and

create

a

Dwarf_Debug

object

for

each

of

them.

1.

ddpi_elf_get_elf_file_name

queries

the

name

of

an

ELF

object

file.

If

the

executable

module

was

compiled

with

the

DEBUG(FORMAT(DWARF))

compiler

option,

then

an

ELF

object

file

has

been

created,

and

its

name

and

location

are

stored

in

the

CU.

ddpi_elf_get_elf_file_name

will

retrive

this

information.

In

this

case,

proceed

to

5

on

page

28.

If

no

file

exists,

the

function

returns

DW_DLV_NO_ENTRY.

For

this

example,

this

means

that

the

information

is

in

the

ISD

format.

In

general,

this

may

not

be

the

Chapter

5.

Using

consumer

and

producer

functions

27

case,

and

additional

logic

is

required

to

determine

the

kind

of

debugging

information

that

is

available.

For

more

information

on

the

possible

types

of

debugging

data,

see

“Accessing

debugging

information”

on

page

15.

2.

ddpi_elf_get_csect_addrs

retrieves

the

boundaries

of

the

CU

from

the

current

ELF

descriptor.

3.

ddpi_fp_convert_c_cpp_isdobj

converts

the

ISD

debugging

information.

The

ISD

information

is

converted

to

the

DWARF

format

using

the

CU

boundaries.

4.

ddpi_elf_set_source

sets

the

source

of

the

ELF

descriptor

associated

with

hello.

The

converted

debugging

information

is

kept

in

a

temporary

memory

file.

This

can

be

seen

as

a

temporary

ELF

object

file,

which

will

be

used

as

the

source

of

the

ELF

descriptor

for

the

consumer

process.

At

this

point,

skip

step

5,

and

proceed

to

step

6.

5.

The

name

returned

by

ddpi_elf_get_elf_file_name

is

used

to

open

the

file,

read

the

ELF

information,

and

create

an

ELF

descriptor.

All

character

strings

accepted

and

returned

by

the

CDA

libraries

are

in

ASCII(ISO8859-1).

The

file

name

has

to

be

converted

to

EBCDIC

before

calling

fopen.

6.

dwarf_elf_init_b

initializes

a

libdwarf

consumer

object.

Once

all

the

CUs

have

been

processed,

a

libdwarf

consumer

object

(Dwarf_Debug)

is

initialized

by

calling

dwarf_elf_init_b.

7.

ddpi_dealloc

frees

the

list

of

Ddpi_Elf

objects.

The

list

created

by

ddpi_module_extract_C_CPP_information

is

no

longer

needed.

8.

display_global_symbols

(a

democ.c

function)

retrieves

and

prints

out

the

global

symbols

found

in

hello.

The

debugging

information

is

ready

for

consumption.

This

function

demonstrates

a

small

subset

of

libdwarf

functions

that

return

the

information

to

print

out.

More

examples

of

DWARF

APIs

can

be

found

in

the

dwarfdump

utility.

Terminating

the

objects

The

main

object

of

the

example

is

now

complete.

The

final

steps

show

how

to

terminate

the

created

objects.

1.

dwarf_get_elf

returns

the

ELF

descriptors

associated

with

the

libdwarf

consumer

object.

28

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

2.

dwarf_finish

terminates

the

libdwarf

consumer

object.

This

function

does

not

free

all

the

storage

used

for

ELF

objects,

which

is

why

dwarf_get_elf

was

called

before

terminating

the

object.

3.

elf_end

terminates

the

ELF

descriptor.

4.

ddpi_finish

releases

any

storage

that

was

acquired

while

processing

the

module.

Chapter

5.

Using

consumer

and

producer

functions

29

30

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Chapter

6.

In

Storage

Debug

(ISD)

Information

Conversion

Utility

In

Storage

Debug

(ISD)

information

is

produced

by

C/C++

compilers

and

other

language

translators

to

enable

debugging

tools

to

present

information

and

aid

developers

in

debugging.

ISD

information

is

not

a

programmable

interface

as

the

knowledge

and

understanding

of

the

information

is

encapsulated

in

the

debugging

tools.

This

effectively

limits

the

field

of

debug

related

tools.

To

remove

this

limitation

a

new

form

of

debugging

information

has

been

introduced.

The

data

uses

the

DWARF

format,

and

is

stored

in

ELF

object

files.

For

the

convenience

of

the

zSeries

user,

the

debugging

information

can

be

accessed

using

the

Common

Debug

Architecture

(CDA)

libraries

and

utilities.

One

of

these

utilities

is

the

isdcnvt

utility.

Previous

to

z/OS

V1R6,

the

only

method

for

generating

debugging

information

was

to

use

the

TEST

option

and

the

debugging

information

was

ISD

only.

Starting

with

z/OS

V1R6,

the

DWARF

debugging

information

is

generated

by

using

the

DEBUG

compiler

option.

However,

DWARF

debugging

information

can

also

be

generated

from

ISD

information

using

isdcnvt.

The

input

to

isdcnvt

is

an

object

file

generated

by

the

C/C++

compiler

using

the

TEST

or

DEBUG(FORMAT(ISD))

compiler

options.

The

utility

produces

a

file

containing

the

new

debugging

information

which

is

suitable

for

use

with

debug

tools

that

support

ELF

and

DWARF

interfaces,

such

as

dbx.

The

following

syntax

is

used

to

invoke

isdcnvt:

isdcnvt

[-v]

-o

object_file_name

where:

v

-v

is

an

optional

command

line

flag

that

produces

version

information

for

the

libelf,

libdwarf,

and

libddpi

libraries

v

object_file_name

is

the

name

of

an

object

file

that

contains

the

ISD

information

Object

file

formats

supported

by

isdcnvt

are

OBJ,

XOBJ

and

GOFF.

Object

files

can

have

XPLINK

or

non-XPLINK

linkage,

but

only

object

files

produced

by

the

IBM

C/C++

compilers

are

currently

supported.

Note:

For

more

information

about

the

supported

compilers,

see

“CDA

requirements

and

recommendations”

on

page

5.

The

output

file

name

is

constructed

using

the

object_file_name

as

the

base.

Although

the

object

file

name

can

have

any

suffix,

only

the

standard

.o

suffix

is

recognized

and

replaced

with

the

standard

.dbg

suffix

when

constructing

the

output

file

name.

All

other

suffixes,

including

no

suffix

at

all,

are

kept

and

the

standard

.dbg

suffix

is

appended

when

constructing

the

output

file

name.

Note:

This

process

will

overwrite

any

existing

file

with

the

same

name

as

the

expected

output

file.

isdcnvt

is

a

UNIX

System

Services

(USS)

utility

that

runs

in

the

shell

environment.

It

supports

only

HFS

files

for

input

and

output.

If

no

errors

are

encountered

during

the

conversion,

the

utility

terminates

with

return

code

zero.

If

an

error

condition

is

detected

during

the

conversion,

the

utility

returns

an

error

code

with

the

following

format:

©

Copyright

IBM

Corp.

2004

31

CRR

where

v

C

is

a

decimal

digit

indicating

the

error

code

v

RR

is

a

two-digit

decimal

number

indicating

the

reason

code

The

error

codes

are:

v

1

-

a

recoverable

error

condition

v

2

-

an

internal

error

that

should

be

reported

to

the

IBM

service

team.

The

reason

codes

associated

with

the

error

code

1

are:

v

01

-

empty

compilation

unit

This

error

indicates

that

the

compilation

unit

contained

no

code

sections,

which

is

typical

for

data-only

compilation

units.

If

this

is

an

expected

condition,

the

build

process

can

check

for

this

return

code

and

continue

processing.

v

02

-

invalid

usage

This

error

indicates

that

the

utility

was

not

invoked

using

the

correct

invocation

syntax.

To

resolve

the

problem,

ensure

that

the

correct

invocation

syntax

is

used.

v

03

-

failed

to

load

debug

APIs

To

perform

the

conversion,

the

conversion

utility

requires

debug

APIs

that

are

loaded

at

initialization.

The

APIs

are

provided

in

the

CDAEED

DLL,

which

is

found

in

the

CEE.SCEERUN2

MVS

dataset.

To

resolve

the

problem,

ensure

that

CDAEED

is

found

by

the

loader

using

the

MVS

search

order.

For

example,

ensure

that

CEE.SCEERUN2

is

in

the

STEPLIB

environment

variable.

v

04

-

compilation

unit

has

no

debugging

information

This

error

indicates

that

the

compilation

unit

did

not

contain

any

debugging

information.

To

resolve

this

problem,

ensure

that

the

compilation

unit

is

compiled

with

the

TEST

or

DEBUG(FORMAT(ISD))

compiler

option.

v

05

-

failed

to

open

input

file

This

error

can

occur

if

an

invalid

object

file

has

been

specified,

or

if

it

does

not

have

sufficient

read

permission.

To

resolve

the

problem,

ensure

that

a

valid

object

file

is

specified

and

that

it

has

sufficient

read

permission.

v

06

-

failed

to

open

output

file

An

output

file

for

the

converted

debugging

information

could

not

be

opened.

This

can

be

caused

by

conditions

such

as

insufficient

space

in

the

file

system

that

is

hosting

the

current

directory,

or

no

write

permission

for

the

current

directory.

To

resolve

the

problem,

ensure

that

the

file

system

has

sufficient

space

(usually

one

third

of

the

input

file

size),

and

that

the

write

permission

is

set

for

the

current

directory.

v

07

-

version

mismatch

The

conversion

utility

dynamically

loads

debug

APIs,

so

the

version

of

the

utility

may

not

match

the

version

of

the

debug

APIs.

To

resolve

the

problem,

ensure

that

the

correct

version

of

the

debug

APIs

is

found

by

the

loader

using

the

MVS

search

order.

The

reason

code

associated

with

the

error

code

2

is

a

two-digit

decimal

number

providing

further

information

that

can

help

diagnose

the

problem.

This

error

code

usually

indicates

a

problem

in

the

conversion

utility

or

a

language

translator

that

produced

the

object

file.

To

resolve

this

problem,

contact

IBM

support

and

provide

the

test

case

that

reproduces

the

problem.

32

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Appendix

A.

Diagnosing

problems

This

appendix

tells

you

how

to

diagnose

failures

in

the

Common

Debug

Architecture

(CDA)

libraries

and

utilities.

If

you

discover

that

the

problem

is

a

valid

CDA

problem,

please

refer

to

http://techsupport.services.ibm.com/guides/handbook.html

for

information

on

obtaining

IBM

service

and

support.

Using

the

diagnosis

checklist

This

checklist

is

designed

to

either

solve

your

problem

or

help

you

gather

the

diagnostic

information

required

for

determining

the

source

of

the

error.

It

can

help

you

to

confirm

if

the

suspected

failure

is

caused

by

an

error

in

the

CDA

libraries

and

utilities,

or

by

incorrect

usage

of

them.

Step

through

each

of

the

items

in

the

diagnosis

checklist

below

to

see

if

they

apply

to

your

problem:

v

Verify

that

your

installation

is

at

the

most

current

maintenance

level.

That

is,

verify

that

you

have

received

all

issued

IBM

Program

Temporary

Fixes

(PTFs)

and

have

installed

them.

Your

installation

may

have

already

received

a

PTF

that

fixes

the

problem.

v

Check

if

the

preventive

service

planning

(PSP)

bucket

contains

information

related

to

your

problem.

The

PSP

is

an

online

database

available

through

IBM

service

channels.

It

gives

information

about

product

installation

problems

and

other

problems.

v

Verify

that

the

appropriate

header

files

have

been

included

and

that

the

include

paths

are

specified

correctly,

if

the

error

occurs

during

compilation.

That

is:

–

Include

libelf.h

if

APIs

from

the

libelf

library

are

called.

–

Include

libdwarf.h

and

dwarf.h

if

APIs

from

the

libdwarf

library

are

called.

–

Include

libddpi.h

if

APIs

from

the

libddpi

library

are

called.

v

Verify

that

your

application

is

compiled

with

the

XPLINK

compiler

option

if

it

calls

APIs

from

the

libddpi

library.

v

Verify

that

the

sidedeck

is

included

during

the

link

step

when

linking

your

application.

The

libelf

and

libdwarf

libraries

are

packaged

for

31-bit

as

a

single

DLL

module

named

CDAEED

and

for

64-bit

as

a

single

DLL

module

named

CDAEQED.

v

Verify

that

CDAEED

exists

during

the

execution

of

your

application.

You

can

use

the

following

code:

Note:

CDAEED

in

the

code

sample

below

is

a

32-bit

library.

If

your

application

is

64-bit,

replace

CDAEED

with

CDAEQED.
#include

<dll.h>

dllhandle*dllhand;

dllhand

=

dllload("CDAEED");

/*CDAEED

is

the

name

of

the

libdwarf/libelf

DLL

module

*/

if

(dllhand

==NULL){

/*libdwarf/libelf

DLL

not

found!*/

/*make

sure

CDAEED

can

be

found

either

through

the

STEPLIB

or

the

LIBPATH

*/

}

v

Verify

that

you

are

using

the

correct

version

of

CDAEED.

If

your

application

uses

a

libdwarf

or

a

libelf

header

file

that

is

incompatible

with

the

CDAEED,

then

your

application

may

fail.

You

can

use

the

following

code:

©

Copyright

IBM

Corp.

2004

33

http://techsupport.services.ibm.com/guides/handbook.html

if

(elf_dll_version(LIBELF_DLL_VERSION)!=0)

{

/*Version

mismatched

*/

/*Make

sure

your

application

is

compiled

with

the

libdwarf/libelf

header

file

that

are

found

together

with

the

DLL

module

*/

}

v

If

an

abend

occurs,

then

verify

that

it

is

caused

by

product

failures

and

not

by

program

errors.

Read

the

CEEDUMP

to

determine

if

the

abend

happens

within

the

CDA

libraries

or

utilities.

For

example,

the

CEEDUMP

would

show

if

the

exception

occurred

in

the

CDAEED

load

module

for

31-bit

or

in

the

CDAEQED

load

module

for

64-bit.

Similarly,

if

the

error

occurred

at

an

API

entry

point,

then

where

the

exception

occurred

would

contain

one

or

more

of

the

keywords

dwarf,

elf,

ddpi,

dwarfdump,

or

isdcnvt.

v

Consider

writing

a

small

test

case

that

recreates

the

problem,

after

you

identify

the

failure.

The

test

case

could

help

you

determine

if

the

error

is

in

a

user

function

or

in

CDA.

Do

not

make

the

test

case

larger

than

75

lines

of

code.

The

test

case

is

not

required,

but

it

could

expedite

the

process

of

finding

the

problem.

If

the

error

is

not

a

CDA

failure,

refer

to

the

diagnosis

procedures

for

the

product

that

failed.

v

If

you

are

experiencing

a

no-response

problem,

try

to

force

a

dump,

and

cancel

the

program

with

the

dump

option.

v

Record

the

sequence

of

events

that

led

to

the

error

condition

and

any

related

programs

or

files.

It

is

also

helpful

to

record

the

service

level

of

the

CDA

libraries.

The

following

table

lists

how

to

find

the

level.

Library

API

libelf

elf_build_level

libdwarf

dwarf_build_level

libddpi

ddpi_build_level

Avoiding

installation

problems

Perform

the

following

steps

to

avoid

or

solve

most

installation

problems:

1.

Review

the

step-by-step

installation

procedure

for

the

Run-Time

Library

Extension

element.

This

documentation

is

located

in

the

z/OS

Program

Directory.

2.

Consult

the

PSP

bucket

as

described

in

“Using

the

diagnosis

checklist”

on

page

33.

If

you

still

cannot

solve

the

problem,

develop

a

keyword

string

and

contact

your

IBM

Support

Center.

You

may

need

to

reinstall

CDA

by

using

the

procedure

that

is

documented

in

the

z/OS

Program

Directory.

This

procedure

is

tested

for

each

product

release

and

successfully

installs

the

product.

34

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Appendix

B.

Accessibility

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

major

accessibility

features

in

z/OS

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Using

assistive

technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

user

interfaces

found

in

z/OS.

Consult

the

assistive

technology

documentation

for

specific

information

when

using

such

products

to

access

z/OS

interfaces.

Keyboard

navigation

of

the

user

interface

Users

can

access

z/OS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

z/OS

TSO/E

Primer,

z/OS

TSO/E

User’s

Guide,

and

z/OS

ISPF

User’s

Guide

Volume

I

for

information

about

accessing

TSO/E

and

ISPF

interfaces.

These

guides

describe

how

to

use

TSO/E

and

ISPF,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

z/OS

information

z/OS

information

is

accessible

using

screen

readers

with

the

BookServer/Library

Server

versions

of

z/OS

books

in

the

Internet

library

at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

One

exception

is

command

syntax

that

is

published

in

railroad

track

format;

screen-readable

copies

of

z/OS

books

with

that

syntax

information

are

separately

available

in

HTML

zipped

file

form

upon

request

to

compinfo@ca.ibm.com.

©

Copyright

IBM

Corp.

2004

35

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

36

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OR

CONDITIONS

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

37

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

the

z/OS

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming-Interface

information

This

publication

documents

intended

Programming

Interfaces

that

allow

the

customer

to

write

programs

to

obtain

services

of

Common

Debug

Architecture.

Trademarks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

AD/Cycle

BookManager

BookMaster

eServer

IBM

Language

Environment

MVS

MVS/ESA

OS/390

S/390

z/OS

zSeries

38

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Standards

The

libddpi

library

supports

the

DWARF

Version

3

format

and

ELF

application

binary

interface

(ABI).

DWARF

was

developed

by

the

UNIX

International

Programming

Languages

Special

Interest

Group

(SIG).

CDA’s

implementation

of

DWARF

is

based

on

working

draft

7

of

the

DWARF

3

standard.

ELF

was

developed

as

part

of

the

System

V

ABI.

It

is

copyrighted

1997,

2001,

The

Santa

Cruz

Operation,

Inc.

All

rights

reserved.

Notices

39

40

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

Bibliography

This

bibliography

lists

the

publications

for

IBM

products

that

are

related

to

Common

Debug

Architecture.

It

includes

publications

covering

the

application

programming

task.

The

bibliography

is

not

a

comprehensive

list

of

the

publications

for

these

products,

however,

it

should

be

adequate

for

most

z/OS

CDA

users.

Refer

to

z/OS

Information

Roadmap,

SA22-7500,

for

a

complete

list

of

publications

belonging

to

the

z/OS

product.

Related

publications

not

listed

in

this

section

can

be

found

on

the

IBM

Online

Library

Omnibus

Edition

MVS

Collection,

SK2T-0710,

the

z/OS

Collection,

SK3T-4269,

or

on

a

tape

available

with

z/OS.

z/OS

Run-Time

Library

Extensions

v

DWARF/ELF

Extensions

Library

Reference,

SC09-7655

v

z/OS

Common

Debug

Architecture

Library

Reference,

SC09-7654

v

C/C++

Legacy

Class

Libraries

Reference,

SC09-7652

z/OS

v

z/OS

Introduction

and

Release

Guide,

GA22-7502

v

z/OS

and

z/OS.e

Planning

for

Installation,

GA22-7504

v

z/OS

Summary

of

Message

and

Interface

Changes,

SA22-7505

v

z/OS

Information

Roadmap,

SA22-7500

z/OS

C/C++

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

User’s

Guide,

SC09-4767

v

z/OS

C/C++

Language

Reference,

SC09-4815

v

z/OS

C/C++

Messages,

GC09-4819

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

v

z/OS

C

Curses,

SA22-7820

v

z/OS

C/C++

Compiler

and

Run-Time

Migration

Guide

for

the

Application

Programmer,

GC09-4913

v

Standard

C++

Library

Reference,

SC09-4949

v

IBM

Open

Class

Library

Transition

Guide,

SC09-4948

z/OS

Language

Environment

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

v

z/OS

Language

Environment

Writing

Interlanguage

Communication

Applications,

SA22-7563

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Run-Time

Application

Migration

Guide,

GA22-7565

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Run-Time

Messages,

SA22-7566

©

Copyright

IBM

Corp.

2004

41

v

z/OS

Language

Environment

Vendor

Interfaces,

SA22-7568

z/Architecture

v

z/Architecture

Principles

of

Operations,

which

is

available

at:

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/DZ9ZBK01

42

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/DZ9ZBK01

INDEX

A
accessibility

35

accessing

DIEs

19

addresses
relocation

21

addresses

in

memory

image

21

API

types,

libddpi
CDA-application

model

4

conversion

4

DWARF-expression

4

support

4

system-dependent

4

system-independent

4

APIs
consumer

1

producer

1

application

module,

extracting

debugging

information

15

ASCII
codeset

5

compiler

option

5

C
CDA

definition

1

libraries

1

changes

5

CDA

5

checklist

33

codeset
ASCII(ISO8859-1)

5

Common

Debug

Architecture
See

CDA

compiler

options
ASCII

5

DEBUG

14

GONUMBER

4

NOTEST

4

TEST

4

XPLINK

5

compiler

version

requirements

5

consumer
API

1

example

25

object

14

consuming

a

DWARF

object

18

conversion
See

also

isdcnvt

application

21,

25

direct

function

calls

15

supported

formats

31

symbol

22

utility

4

D
DEBUG

compiler

option

14

debugging

information
converting

15

non-DWARF

15

read

from

ELF

descriptor

11,

12

testing

for

DWARF

format

15

write

to

ELF

descriptor

10

descriptor

7

DIEs
accessing

19

navigating

18

traversing

18

disability

35

documents,

licensed

viii

DWARF
consumer

object

18

definition

1

format

3

objects

1

producer

object

11

Dwarf_Debug

1

Dwarf_P_Debug

1

dwarfdump

5

E
ELF

2

definition

1

descriptor

7

object

file,

definition

1

object

file,

loading

21

object

file,

read

from

12

read

from

descriptor

11

using

a

descriptor

12

write

to

descriptor

10

error

codes,

isdcnvt

31

examples,

location

vii

Executable

and

Linking

Format
See

ELF

G
global

variable

integer

23

GONUMBER

compiler

option

4

H
HEAPPOOLS(on)

run-time

option

5

I
In

Store

Debug
See

ISD

initializing

libelf

and

libdwarf

17

ISD

4

©

Copyright

IBM

Corp.

2004

43

isdcnvt

4

error

codes

31

options

31

supported

object

file

formats

31

syntax

31

K
keyboard

35

L
libddpi

library

3

libdwarf

library

3

libdwarf

objects

definition

1

libelf

library

2

libraries
CDA

1

interaction

overview

7

libddpi

3

libdwarf

3

libelf

2

using

libelf

and

libdwarf

10,

11,

17,

21

using

libelf,

libdwarf,

and

libddpi

12,

25

licensed

documents

viii

location

expression

23

LookAt

message

retrieval

tool

viii

M
message

retrieval

tool,

LookAt

viii

N
navigating

DIEs

18

non-DWARF

debugging

information

15

NOTEST

compiler

option

4

Notices

37

O
object

consumer

1,

12

DWARF

1

ELF

object

file

1

libdwarf

1

producers

1

options
compiler

4,

5

isdcnvt

31

run-time

5

P
PPA1

section

21

PPA2

section

21

producer
API

1

example

21

R
read

DWARF

debugging

information

11,

12

from

ELF

descriptor

11

from

ELF

object

file

12

relocation

21

reporting

failures

33

requirements
CDA

5

compiler

5

user

v

run-time

option
HEAPPOOLS(on)

5

S
sample

applications
consumer

17,

25

dwarfdump

5

producer

21

shortcut

keys

35

standards
DWARF

3

ELF

2

supported

object

file

formats

31

symbol,

conversion

22

T
tasks

avoiding

installation

problems
steps

for

34

converting

a

global

variable

integer
steps

for

23

converting

a

symbol
steps

for

22

creating

a

line-number

table
steps

for

21

preparing

a

.debug_ppa

section
steps

for

21

terminating

libelf

and

libdwarf

20

TEST

compiler

option

4

testing

for

DWARF

debugging

information

15

traversing

DIEs

18

U
user

area

5

user

requirements

v

using

DWARF

object

18

utilities
dwarfdump

5

isdcnvt

4

V
variable-length

user

area

5

44

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

W
write

DWARF

debugging

information

10

to

ELF

descriptor

10

X
XPLINK

compiler

option

5

INDEX

45

46

z/OS

V1R6.0

IBM

Common

Debug

Architecture

User’s

Guide

����

Program

Number:

5694-A01

and

5655-G52

SC09-7653-01

	Contents
	About this document
	Who should use this document
	A note about examples
	CDA and related publications
	Softcopy documents
	Softcopy examples
	Common Debug Architecture on the World Wide Web
	Where to find more information
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations

	Chapter 1. About Common Debug Architecture
	CDA libraries and utilities
	libelf
	libdwarf
	libddpi
	isdcnvt
	dwarfdump

	Changes for CDA in z/OS V1R6
	CDA requirements and recommendations
	CDA limitations

	Chapter 2. Overview of reading and writing CDA debugging information
	Creating an ELF descriptor
	Writing DWARF data to the ELF object file
	Reading from an ELF object file with libelf and libdwarf
	Reading from an ELF object file with libelf, libdwarf, and libddpi
	Accessing debugging information
	Accessing z/OS C/C++ debugging information
	Accessing and converting ISD information
	Accessing non-z/OS C/C++ debugging information

	Chapter 3. Using consumer functions
	Initializing libelf and libdwarf
	Initialization process

	Consuming DWARF data
	Traversing the DIE hierarchy
	Accessing information in a DIE

	Terminating libelf and libdwarf

	Chapter 4. Using producer APIs
	Steps for converting a line-number table
	Steps for preparing the debug_ppa section
	Steps for converting symbols
	Additional steps
	Location expressions

	Example of converting a symbol

	Chapter 5. Using consumer and producer functions
	Creating a consumer application with conversion
	Initializing the libddpi environment
	Creating and using consumer objects
	Terminating the objects

	Chapter 6. In Storage Debug (ISD) Information Conversion Utility
	Appendix A. Diagnosing problems
	Using the diagnosis checklist
	Avoiding installation problems

	Appendix B. Accessibility
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming-Interface information
	Trademarks
	Standards

	Bibliography
	z/OS Run-Time Library Extensions
	z/OS
	z/OS C/C++
	z/OS Language Environment
	z/Architecture

	INDEX

